Zobrazeno 1 - 10
of 1 186
pro vyhledávání: '"Convex minimization"'
Publikováno v:
AIMS Mathematics, Vol 9, Iss 6, Pp 16643-16665 (2024)
Inspired by the ROF model and the $ {L}^{1}/TV $ image denoising model, we propose a combined model to remove Gaussian noise and salt-and-pepper noise simultaneously. This model combines the $ {L}^{1} $ -data fidelity term, $ {L}^{2} $ -data fidelity
Externí odkaz:
https://doaj.org/article/497bb8b3f4bc4bdc80a1eb0ede53e917
Autor:
Nabou, Yassine, Necoara, Ion
Publikováno v:
Computational Optimization and Applications, 2023
Composite minimization involves a collection of functions which are aggregated in a nonsmooth manner. It covers, as a particular case, smooth approximation of minimax games, minimization of max-type functions, and simple composite minimization proble
Externí odkaz:
http://arxiv.org/abs/2203.13367
Autor:
Abdellatif Moudafi
Publikováno v:
Mathematics, Vol 12, Iss 13, p 2081 (2024)
Convergence results of the subgradient algorithm for equilibrium problems were mainly obtained using a Lipschitz continuity assumption on the given bifunctions. In this paper, we first provide a complexity result for monotone equilibrium problems wit
Externí odkaz:
https://doaj.org/article/ad033322a2694478b83f49cb67311cdc
Autor:
Pattanapong Tianchai
Publikováno v:
Fixed Point Theory and Algorithms for Sciences and Engineering, Vol 2023, Iss 1, Pp 1-34 (2023)
Abstract In this paper, we introduce a new iterative forward–backward splitting algorithm with errors for solving the split monotone variational inclusion problem of the sum of two monotone operators in real Hilbert spaces. We suggest and analyze t
Externí odkaz:
https://doaj.org/article/12b4dc933ae94426a1465080bccedc48
Publikováno v:
Fixed Point Theory and Algorithms for Sciences and Engineering, Vol 2023, Iss 1, Pp 1-23 (2023)
Abstract In this paper, a Halpern–Tseng-type algorithm for approximating zeros of the sum of two monotone operators whose zeros are J-fixed points of relatively J-nonexpansive mappings is introduced and studied. A strong convergence theorem is esta
Externí odkaz:
https://doaj.org/article/4b0d155d857c48ebb3d0363e40937f7b
Autor:
Joshua Olilima, Adesanmi Mogbademu, M. Asif Memon, Adebowale Martins Obalalu, Hudson Akewe, Jamel Seidu
Publikováno v:
Heliyon, Vol 9, Iss 10, Pp e20513- (2023)
This study introduces an innovative approach to address convex optimization problems, with a specific focus on applications in image and signal processing. The research aims to develop a self-adaptive extra proximal algorithm that incorporates an ine
Externí odkaz:
https://doaj.org/article/33e46f4b6bfc46e9bf239c641daa6c97
Publikováno v:
AIMS Mathematics, Vol 8, Iss 4, Pp 9557-9575 (2023)
In this paper, we establish a modified proximal point algorithm for solving the common problem between convex constrained minimization and modified variational inclusion problems. The proposed algorithm base on the proximal point algorithm in [19] an
Externí odkaz:
https://doaj.org/article/6615c812d39e40369b4b96c49620c4ce
Publikováno v:
AIMS Mathematics, Vol 87, Iss 3, Pp 7163-7195 (2023)
In this paper, using sunny nonexpansive retractions which are different from the metric projection in Banach spaces, we develop the CR-iteration algorithm in view of two quasi-nonexpansive nonself mappings and also give the convergence analysis for t
Externí odkaz:
https://doaj.org/article/4b65a65995fd46a58046aa9eb64c4470
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Abubakar Adamu, Duangkamon Kitkuan, Poom Kumam, Anantachai Padcharoen, Thidaporn Seangwattana
Publikováno v:
Journal of Inequalities and Applications, Vol 2022, Iss 1, Pp 1-20 (2022)
Abstract In this paper, we introduce an inertial Halpern-type iterative algorithm for approximating a zero of the sum of two monotone operators in the setting of real Banach spaces that are 2-uniformly convex and uniformly smooth. Strong convergence
Externí odkaz:
https://doaj.org/article/db8c296d6cd143b6a2b1ae235507ea0f