Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Continuous linear extension"'
Autor:
Soongbae Kim
Publikováno v:
The Korean Association for Political and Diplomatic History. 39:167-201
Autor:
Alexander Goncharov, Zeliha Ural
Publikováno v:
Journal of Mathematical Analysis and Applications
Given a compact set K subset of R-d, let epsilon(K) denote the space of Whitney jets on K. The compact set K is said to have the extension property if there exists a continuous linear extension operator W : epsilon(K) -> C infinity (R-d). In 1961 B.S
Autor:
Armin Rainer
We prove a version of Whitney's extension theorem in the ultradifferentiable Beurling setting with controlled loss of regularity. As a by-product we show the existence of continuous linear extension operators on certain spaces of Whitney ultrajets on
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ce88510f9ad7ab40ff287896477d1475
We prove sectorial extension theorems for ultraholomorphic function classes of Beurling type defined by weight functions with a controlled loss of regularity. The proofs are based on a reduction lemma, due to the second author, which allows to extrac
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ba237673099db780412434a9c41a3d44
Autor:
Martin Forde, Benjamin Smith
Publikováno v:
Statistics & Probability Letters. 161:108732
We compute E ( X t | ( X s ) 0 ≤ s ≤ L ) for the standard Bacry–Muzy log-correlated Gaussian field X with covariance log + T t − s , which corrects the finite-horizon prediction formula in Vargas et al. (Duchon et al., 0000). The problem can
Autor:
Masoumeh Aghajani, Kourosh Nourouzi
Publikováno v:
Aequationes mathematicae. 83:215-221
In this paper, we investigate the existence of unique continuous linear extension for linear correspondences. We also give some results on cosine families of linear correspondences.
Autor:
Pascal Beaugendre
Publikováno v:
Mathematische Nachrichten. 279:1289-1312
B. S. Mityagin a montre que les polynomes de Tchebyshev forment une base de Schauder de l'espace des fonctions de classe C∞ sur l'intervalle [–1,1]. Il en deduit un operateur lineaire continu d'extension explicite. Ces resultats ont ete etendus,
Autor:
Pascal Beaugendre
Publikováno v:
Comptes Rendus Mathematique. 338:197-202
Mityagin proved that the Tchebyshev polynomials form a Schauder basis of the space of C∞ functions on the interval [−1,1]. Thus, he deduced an explicit continuous linear extension operator. These results were extended, by Goncharov, to compact se
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Manuel Valdivia
Publikováno v:
Results in Mathematics. 30:321-345
Let ω be a weight in the sense of Braun, Meise, Taylor, which defines a non-quasianalytic class. Let H be a compact subset of ℝn. It is proved that for every function ƒ on ℝn which belongs to the non-quasianalytic (ω)-class, there is an elemen