Zobrazeno 1 - 10
of 98
pro vyhledávání: '"Content-based recommender systems"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
O crescimento acelerado da internet proporcionou uma quantidade grande de informações acessíveis aos usuários. Ainda que tal quantidade possua algumas vantagens, os usuários que possuem pouca ou nenhuma experiência para escolher uma alternativa
Autor:
Capdevila Solanich, Albert
Technological progress in recent years has led to the automation of many of the tasks we perform in our daily life. Massive use of digital devices nowadays means that a lot of information could be collected, for example about our habits and behaviour
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3484::6e9054c4a720c82f41fa4ef4cdaed96e
https://hdl.handle.net/2117/384760
https://hdl.handle.net/2117/384760
Autor:
Ziogas Ioannis-Panagiotis
In this MSc thesis, we put forward several novel recommender algorithms integrated into a hybrid recommender system for the tourism domain. To this end, we first explore the use of semantic similarity measures for Content-based recommendations to sug
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b7a17e8aef85a010a0dd2d5e16e0284c
Conference
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
ACM Computing Surveys. 53:1-38
Recommender systems have become a popular and effective means to manage the ever-increasing amount of multimedia content available today and to help users discover interesting new items. Today’s recommender systems suggest items of various media ty
Autor:
Bago, Lucija
„A lot of times, people don’t know what they want until you show it to them“ ili u prijevodu „Ljudi često ne znaju što žele dok im to ne pokažeš“, citat je Stevea Jobsa koji savršeno opisuje ulogu sustava preporučivanja. Sustavi prep
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::baa9d2dd1e8b04a354a7c621b34a072e
https://repozitorij.fer.unizg.hr/islandora/object/fer:10219
https://repozitorij.fer.unizg.hr/islandora/object/fer:10219
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Starýchfojtů, Josef
Recommender systems are now part of our daily life more than ever. We use them through several platforms, like music or video players. As users of such systems, we don't need to actively seek for new content, but let it be comfortably recommended to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2186::85b186ef337be0b1390e99bed77f60e5
http://www.nusl.cz/ntk/nusl-415921
http://www.nusl.cz/ntk/nusl-415921
Publikováno v:
Lops, P, Jannach, D, Musto, C, Bogers, T & Koolen, M 2019, ' Trends in content-based recommendation : Preface to the special issue on Recommender systems based on rich item descriptions ', User Modeling and User-Adapted Interaction, vol. 29, no. 2, pp. 239-249 . https://doi.org/10.1007/s11257-019-09231-w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7bf286efbf570a1c398cb720d6d17d14
https://vbn.aau.dk/da/publications/86c63725-f33f-4228-ab4e-e5d57347249c
https://vbn.aau.dk/da/publications/86c63725-f33f-4228-ab4e-e5d57347249c