Zobrazeno 1 - 10
of 168
pro vyhledávání: '"Cong Trinh"'
Autor:
Nguyen Thi Thu Ha, Hoang Lan Ngo, Thi Be Pham, Nguyen Hoang Hao, Cong Trinh Bui, Thi Lan Phung, Le Minh Cam, Nguyen Ngoc Ha
Publikováno v:
ACS Omega, Vol 9, Iss 7, Pp 7976-7985 (2024)
Externí odkaz:
https://doaj.org/article/dfb4d4823dac4995a296c6c162a5b511
Time series data from various domains is continuously growing, and extracting and analyzing temporal patterns within these series can provide valuable insights. Temporal pattern mining (TPM) extends traditional pattern mining by incorporating event t
Externí odkaz:
http://arxiv.org/abs/2409.05042
Autor:
Hoang, Dinh-Cuong, Nguyen, Anh-Nhat, Nguyen, Thu-Uyen, Hoang, Ngoc-Anh, Vu, Van-Duc, Vu, Duy-Quang, Ngo, Phuc-Quan, Phan, Khanh-Toan, Tran, Duc-Thanh, Nguyen, Van-Thiep, Duong, Quang-Tri, Ho, Ngoc-Trung, Tran, Cong-Trinh, Duong, Van-Hiep, Mai, Anh-Truong
Publikováno v:
In Engineering Applications of Artificial Intelligence January 2025 139 Part B
Autor:
TRAN, Cong Trinh1, Thi Lan Huong LE1, Tran Thi Thuy HANG1, Nghi Hai MA2, Ho Hoang PHUONG1, Tran Phanchung THUY3 drthuytranent@gmail.com
Publikováno v:
Medeniyet Medical Journal. Jun2024, Vol. 39 Issue 2, p117-121. 5p.
For positive definite matrices $A$ and $B$, the Kubo-Ando matrix power mean is defined as $$ P_\mu(p, A, B) = A^{1/2}\left(\frac{1+(A^{-1/2}BA^{-1/2})^p}{2}\right )^{1/p} A^{1/2}\quad (p \ge 0). $$ In this paper, for $0\le p \le 1 \le q$, we show tha
Externí odkaz:
http://arxiv.org/abs/2106.05914
Autor:
Thi Be, Pham, Thuy Hang, Nguyen, Van Khu, Le, Van Hung, Hoang, Cong Trinh, Bui, Minh Tan, Vu, Ngoc Ha, Nguyen, Thi Thu Ha, Nguyen
Publikováno v:
In Computational and Theoretical Chemistry April 2024 1234
Autor:
Le, Cong Trinh
In this paper we introduce the "tracial $K$-moment problem" and the "sequential matrix-valued $K$-moment problem" and show the equivalence of the solvability of these problems. Using a Haviland's theorem for matrix polynomials, we solve these $K$-mom
Externí odkaz:
http://arxiv.org/abs/1904.03592
In this paper we show that for a non-negative operator monotone function $f$ on $[0, \infty)$ such that $f(0)= 0$ and for any positive semidefinite matrices $A$ and $B$, $$ Tr((A-B)(f(A)-f(B))) \le Tr(|A-B|f(|A-B|)). $$ When the function $f$ is opera
Externí odkaz:
http://arxiv.org/abs/1904.01961
In this paper we establish some applications of the Scherer-Hol's theorem for polynomial matrices. Firstly, we give a representation for polynomial matrices positive definite on subsets of compact polyhedra. Then we establish a Putinar-Vasilescu Posi
Externí odkaz:
http://arxiv.org/abs/1904.00206
Autor:
Lê, Công-Trình
In matrix analysis, the \textit{Wielandt-Mirsky conjecture} states that $$ dist(\sigma(A), \sigma(B)) \leq \|A-B\|, $$ for any normal matrices $ A, B \in \mathbb C^{n\times n}$ and any operator norm $\|\cdot \|$ on $C^{n\times n}$. Here $dist(\sigma(
Externí odkaz:
http://arxiv.org/abs/1811.03227