Zobrazeno 1 - 10
of 50
pro vyhledávání: '"Cong Phuoc Huynh"'
Publikováno v:
IEEE Transactions on Pattern Analysis and Machine Intelligence. 41:2112-2130
A fundamental problem in image deblurring is to recover reliably distinct spatial frequencies that have been suppressed by the blur kernel. To tackle this issue, existing image deblurring techniques often rely on generic image priors such as the spar
Publikováno v:
IEEE Transactions on Geoscience and Remote Sensing. 57:6792-6807
In this paper, we propose a spatial–spectral feature fusion model with a predictive feature weighting mechanism and demonstrate its applications to the problems of hyperspectral image classification and segmentation. To address these problems, we l
Publikováno v:
CVPR Workshops
We propose to learn a fully-convolutional network model that consists of a Chain of Identity Mapping Modules and residual on the residual architecture for image denoising. Our network structure possesses three distinctive features that are important
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4d1b64f27d75e9e504ac81e04a1d570d
http://arxiv.org/abs/2004.13523
http://arxiv.org/abs/2004.13523
Publikováno v:
IEEE Transactions on Image Processing. 26:5506-5518
We present a novel image denoising algorithm that uses external, category specific image database. In contrast to existing noisy image restoration algorithms that search patches either from a generic database or noisy image itself, our method first s
Publikováno v:
ICIP
This paper presents an approach to pedestrian detection in thermal infrared (thermal) images with limited annotations. The key idea is to adapt the abundance of color images associated with bounding box annotations to the thermal domain for training
Publikováno v:
ICASSP
In this paper, we address the problem of ground-based hyperspectral image segmentation by combining pixel-level and region-level classification with a region boundary refinement approach. To this end, we represent the spatio-spectral feature of image
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030110178
ECCV Workshops (4)
ECCV Workshops (4)
3D pose estimation from a single image is a challenging task in computer vision. We present a weakly supervised approach to estimate 3D pose points, given only 2D pose landmarks. Our method does not require correspondences between 2D and 3D points to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5cba3cddb8493dd7550965e4d2fbd503
https://doi.org/10.1007/978-3-030-11018-5_7
https://doi.org/10.1007/978-3-030-11018-5_7
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030110147
ECCV Workshops (3)
ECCV Workshops (3)
We propose a framework that harnesses visual cues in an unsupervised manner to learn the co-occurrence distribution of items in real-world images for complementary recommendation. Our model learns a non-linear transformation between the two manifolds
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::df4ac902b4fd6362333e633fee991abf
https://doi.org/10.1007/978-3-030-11015-4_7
https://doi.org/10.1007/978-3-030-11015-4_7
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Structural Monitoring and Maintenance. 2:181-197
Assessing the condition of paint on civil structures is an important but challenging and costly task, in particular when it comes to large and complex structures. Current practices of visual inspection are labour-intensive and time-consuming to perfo