Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Conache, Diana"'
In this paper we solve two open problems in ergodic theory. We prove first that if a Doeblin function $g$ (a $g$-function) satisfies \[\limsup_{n\to\infty}\frac{\mbox{var}_n \log g}{n^{-1/2}} < 2,\] then we have a unique Doeblin measure ($g$-measure)
Externí odkaz:
http://arxiv.org/abs/2303.13891
We study the behavior of the variance of the difference of energies for putting an additional electric unit charge at two different locations in the two-dimensional lattice Coulomb gas in the high-temperature regime. For this, we exploit the duality
Externí odkaz:
http://arxiv.org/abs/2103.11985
Publikováno v:
Ann. Henri Poincar\'e, 20, 3019-3057, 2019
We propose a model for three-dimensional solids on a mesoscopic scale with a statistical mechanical description of dislocation lines in thermal equilibrium. The model has a linearized rotational symmetry, which is broken by boundary conditions. We sh
Externí odkaz:
http://arxiv.org/abs/1811.12812
We consider the plus-phase of the two-dimensional Ising model below the critical temperature. In $1989$ Schonmann proved that the projection of this measure onto a one-dimensional line is not a Gibbs measure. After many years of continued research wh
Externí odkaz:
http://arxiv.org/abs/1802.02059
We study equilibrium states of an infinite system of interacting particles in a Euclidean space. The particles bear `unbounded' spins with a given symmetric a priori distribution. The interaction between the particles is pairwise and splits into posi
Externí odkaz:
http://arxiv.org/abs/1503.06349
Let $\mathbb K(\mathbb R^d)$ denote the cone of discrete Radon measures on $\mathbb R^d$. There is a natural differentiation on $\mathbb K(\mathbb R^d)$: for a differentiable function $F:\mathbb K(\mathbb R^d)\to\mathbb R$, one defines its gradient $
Externí odkaz:
http://arxiv.org/abs/1503.04166
We give a detailed and refined proof of the Dobrushin-Pechersky uniqueness criterion extended to the case of Gibbs fields on general graphs and single-spin spaces, which in particular need not be locally compact. The exponential decay of correlations
Externí odkaz:
http://arxiv.org/abs/1501.00673
Autor:
Conache, Diana1 (AUTHOR) diana.conache@tum.de, Heydenreich, Markus2 (AUTHOR), Merkl, Franz2 (AUTHOR), Rolles, Silke W. W.1 (AUTHOR)
Publikováno v:
Journal of Statistical Physics. Jan2022, Vol. 186 Issue 1, p1-12. 12p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.