Zobrazeno 1 - 10
of 61
pro vyhledávání: '"Computer-generated image"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Quantitative Spectroscopy and Radiative Transfer
Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 271, pp.1-18/107725. ⟨10.1016/j.jqsrt.2021.107725⟩
Journal of Quantitative Spectroscopy and Radiative Transfer, Elsevier, 2021, 271, pp.1-18/107725. ⟨10.1016/j.jqsrt.2021.107725⟩
Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 271, pp.1-18/107725. ⟨10.1016/j.jqsrt.2021.107725⟩
Journal of Quantitative Spectroscopy and Radiative Transfer, Elsevier, 2021, 271, pp.1-18/107725. ⟨10.1016/j.jqsrt.2021.107725⟩
International audience; Over recent decades, numerous studies in a myriad of research fields have improved the efficiency of the Monte-Carlo method to solve radiative transfers in heterogeneous media. The formalization of the concept of path integral
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c1f52279950ebac6445d0e0f07b366e2
https://imt-mines-albi.hal.science/hal-03224186
https://imt-mines-albi.hal.science/hal-03224186
Autor:
Quan, Weize
Publikováno v:
Signal and Image processing. Université Grenoble Alpes [2020-..]; Académie chinoise des sciences (Pékin, Chine), 2020. English. ⟨NNT : 2020GRALT076⟩
With the advances of image editing and generation software tools, it has become easier to tamper with the content of images or create new images, even for novices. These generated images, such as computer graphics (CG) image and colorized image (CI),
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::33b1c5864f55fc9a2b3cbd03e4e81d8c
https://tel.archives-ouvertes.fr/tel-03219867/file/QUAN_2020_archivage.pdf
https://tel.archives-ouvertes.fr/tel-03219867/file/QUAN_2020_archivage.pdf
Publikováno v:
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security, Institute of Electrical and Electronics Engineers, 2018, 13 (11), pp.2772-2787. ⟨10.1109/TIFS.2018.2834147⟩
IEEE Transactions on Information Forensics and Security, Institute of Electrical and Electronics Engineers, 2018, 13 (11), pp.2772-2787. ⟨10.1109/TIFS.2018.2834147⟩
International audience; Distinguishing between natural images (NIs) and computer-generated (CG) images by naked human eyes is difficult. In this paper, we propose an effective method based on a convolutional neural network (CNN) for this fundamental
Conference
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Conference
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Isao Echizen, T. Ngoc-Dung Tieu, Junichi Yamagishi, Huy H. Nguyen, Hoang-Quoc Nguyen-Son, Vincent Nozick
Publikováno v:
ARES 2018 Proceedings of the 13th International Conference on Availability, Reliability and Security
13th International Conference on Availability, Reliability and Security
13th International Conference on Availability, Reliability and Security, Aug 2019, Hambourg, Germany. pp.1-10, ⟨10.1145/3230833.3230863⟩
H. Nguyen, H, T. Tieu, N-D, Nguyen-Son, H-Q, Nozick, V, Yamagishi, J & Echizen, I 2018, Modular Convolutional Neural Network for Discriminating between Computer-Generated Images and Photographic Images . in 13th International Conference on Availability, Reliability and Security (ARES 2018) ., 1, Hamburg, Germany, pp. 1:1-1:10, 13th International Conference on Availability, Reliability and Security, Hamburg, Germany, 27/08/18 . https://doi.org/10.1145/3230833.3230863
ARES
13th International Conference on Availability, Reliability and Security
13th International Conference on Availability, Reliability and Security, Aug 2019, Hambourg, Germany. pp.1-10, ⟨10.1145/3230833.3230863⟩
H. Nguyen, H, T. Tieu, N-D, Nguyen-Son, H-Q, Nozick, V, Yamagishi, J & Echizen, I 2018, Modular Convolutional Neural Network for Discriminating between Computer-Generated Images and Photographic Images . in 13th International Conference on Availability, Reliability and Security (ARES 2018) ., 1, Hamburg, Germany, pp. 1:1-1:10, 13th International Conference on Availability, Reliability and Security, Hamburg, Germany, 27/08/18 . https://doi.org/10.1145/3230833.3230863
ARES
International audience; Discriminating between computer-generated images (CGIs) and photographic images (PIs) is not a new problem in digital image forensics. However, with advances in rendering techniques supported by strong hardware and in genera-t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::75de9907f3b4234ea247edf6b9e0bfcc
https://hal-upec-upem.archives-ouvertes.fr/hal-02007485
https://hal-upec-upem.archives-ouvertes.fr/hal-02007485
This study is part of a broader research project investigating preferences for color combinations in architectural spaces with psychophysical techniques. Working in real environments is challenging, especially with daylight, because of the need to co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1493::3eca415217a8b3d08ff6c5322b5d9560
https://hdl.handle.net/2078.1/216184
https://hdl.handle.net/2078.1/216184