Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Completed étale cohomology"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
He, Tongmu
There has been a long-standing question about whether being perfectoid for an algebra is local in the analytic topology. We provide affirmative answers for the algebras (e.g., over $\overline{\mathbb{Z}_p}$) whose spectra are inverse limits of semi-s
Externí odkaz:
http://arxiv.org/abs/2405.03886
Autor:
Ding, Yiwen
Cette thèse s'inscrit dans le cadre du programme de Langlands local p-adique. Soient L une extension finie de Q_p, \rho_L une représentation p-adique de dimension 2 du groupe de Galois Gal(\overline{Q_p}/L) de L, lorsque \rho_L provient d'une repr
Externí odkaz:
http://www.theses.fr/2015PA112035/document
Autor:
Ding, Yiwen
Publikováno v:
Théorie des nombres [math.NT]. Université Paris Sud-Paris XI, 2015. Français. ⟨NNT : 2015PA112035⟩
The subject of this thesis is in the p-adic Langlands programme. Let L be a finite extension of \Q_p, \rho_L a 2-dimensional p-adic representation of the Galois group \Gal(\overline{\Q_p}/L) of L, if \rho_L is the restriction of a global modular Galo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::666f30f40097c599fe5a784471d5231a
https://tel.archives-ouvertes.fr/tel-01141624/file/VD2_DING_YIWEN_19032015.pdf
https://tel.archives-ouvertes.fr/tel-01141624/file/VD2_DING_YIWEN_19032015.pdf
Autor:
Newton, James
Publikováno v:
Mathematische Annalen; Feb2013, Vol. 355 Issue 2, p729-763, 35p
Autor:
Matthew Baker, Brian Conrad, Samit Dasgupta, Kiran S. Kedlaya, Jeremy Teitelbaum, David Savitt, Dinesh S. Thakur
In recent decades, $p$-adic geometry and $p$-adic cohomology theories have become indispensable tools in number theory, algebraic geometry, and the theory of automorphic representations. The Arizona Winter School 2007, on which the current book is ba
Autor:
Burt Totaro
Group cohomology reveals a deep relationship between algebra and topology, and its recent applications have provided important insights into the Hodge conjecture and algebraic geometry more broadly. This book presents a coherent suite of computationa