Zobrazeno 1 - 10
of 989
pro vyhledávání: '"Compact Riemann surface"'
Autor:
Pengxiu Yu
Publikováno v:
Complex Variables and Elliptic Equations. 68:333-350
Let (M,g) be a compact Riemann surface with smooth boundary. In this paper, using blow-up analysis, we prove the existence of an extremal function for a singular Trudinger–Moser inequality on (M,g).
Autor:
M. I. Tulina, О. А. Chuesheva
Publikováno v:
Вестник Кемеровского государственного университета, Vol 0, Iss 4-3, Pp 136-139 (2015)
V. V. Chueshev began building the general theory of multiplicative functions and Prym differentials on compact Riemann surfaces for arbitrary characters. The paper provides an explicite description of cyclic subgroups in the characters group for comp
Externí odkaz:
https://doaj.org/article/bd2c17a2473d4948be4e8cca6fbcbe02
Autor:
Indranil Biswas, Sorin Dumitrescu
Publikováno v:
Geometriae Dedicata. 215:191-227
We study the branched holomorphic projective structures on a compact Riemann surface X with a fixed branching divisor $$S\, =\, \sum _{i=1}^d x_i$$ , where $$x_i \,\in \, X$$ are distinct points. After defining branched $$\mathrm{SO}(3,{\mathbb C})$$
Publikováno v:
Annales Fennici Mathematici
It is known that every unbranched finite covering \(\alpha\colon\widetilde{S}_{g(\alpha)}\rightarrow S\) of a compact Riemann surface \(S\) with genus \(g\geq 2\) induces an isometric embedding \(\Gamma_{\alpha}\) from the Teichmuller space \(T(S)\)
Autor:
Masanori Adachi
Publikováno v:
Transactions of the American Mathematical Society. 374:7499-7524
The aim of this study is to understand to what extent a 1-convex domain with Levi-flat boundary is capable of holomorphic functions with slow growth. This paper discusses a typical example of such domain, the space of all the geodesic segments on a h
Publikováno v:
Comptes Rendus. Mathématique. 359(5):617-624
We describe some results on moduli space of logarithmic connections equipped with framings on a $n$-pointed compact Riemann surface.
Final version; to appear in Comptes Rendus S\'erie Math\'ematique
Final version; to appear in Comptes Rendus S\'erie Math\'ematique
Autor:
Carlo Gasbarri
Publikováno v:
manuscripta mathematica
manuscripta mathematica, Springer Verlag, 2021, ⟨10.1007/s00229-021-01324-4⟩
manuscripta mathematica, Springer Verlag, 2021, ⟨10.1007/s00229-021-01324-4⟩
Let (X, L) be a polarized variety over a number field K. We suppose that L is an hermitian line bundle. Let M be a non compact Riemann Surface and $$U\subset M$$ be a relatively compact open set. Let $$\varphi :M\rightarrow X(\mathbf{C})$$ be a holom
Autor:
Boris Shapiro, Yuliy Baryshnikov
Publikováno v:
Journal d'Analyse Mathématique. 144:1-19
In this paper, motivated by the classical notion of a Strebel quadratic differential on a compact Riemann surface without boundary, we introduce several more general classes of quadratic differentials (called non-chaotic, gradient, and positive gradi
Autor:
Ramunas Garunkstis
Publikováno v:
Revista de la Unión Matemática Argentina. :213-218
Let Z(s) be the Selberg zeta-function associated to a compact Riemann surface. We consider decompositions Z(s) = f(h(s)), where f and h are meromorphic functions, and show that such decompositions can only be trivial.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.