Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Comes, Jonathan"'
Autor:
Comes, Jonathan
We introduce stuttering look and say sequences and describe their chemical structure in the spirit of Conway's work on audioactive decay. We show the growth rate of a stuttering look and say sequence is an algebraic integer of degree 415.
Externí odkaz:
http://arxiv.org/abs/2206.11991
Publikováno v:
Canad. J. Math. 71 (2019), 1061-1101
We introduce the oriented Brauer-Clifford and degenerate affine oriented Brauer-Clifford supercategories. These are diagrammatically defined monoidal supercategories which provide combinatorial models for certain natural monoidal supercategories of s
Externí odkaz:
http://arxiv.org/abs/1706.09999
Autor:
Comes, Jonathan
For each positive integer $n$, we introduce a monoidal category $\mathcal{JP}(n)$ using a generalization of partition diagrams. When the characteristic of the ground field is either 0 or at least $n$, we show $\mathcal{JP}(n)$ is monoidally equivalen
Externí odkaz:
http://arxiv.org/abs/1612.05182
Autor:
Comes, Jonathan, 1981
x, 81 p. : ill. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number.
We give an exposition of Deligne's tensor category Rep(St) where t is not necessarily an integer. The
We give an exposition of Deligne's tensor category Rep(St) where t is not necessarily an integer. The
Externí odkaz:
http://hdl.handle.net/1794/10867
Autor:
Comes, Jonathan, Heidersdorf, Thorsten
We describe indecomposable objects in Deligne's category $\underline{\operatorname{Re}}\!\operatorname{p}(O_\delta)$ and explain how to decompose their tensor products. We then classify thick ideals in $\underline{\operatorname{Re}}\!\operatorname{p}
Externí odkaz:
http://arxiv.org/abs/1507.06728
Publikováno v:
Quantum Topology 8 (2017), 75-112
The affine oriented Brauer category is a monoidal category obtained from the oriented Brauer category (= the free symmetric monoidal category generated by a single object and its dual) by adjoining a polynomial generator subject to appropriate relati
Externí odkaz:
http://arxiv.org/abs/1404.6574
Autor:
Comes, Jonathan, Ostrik, Victor
Publikováno v:
Algebra Number Theory 8 (2014) 473-496
We prove a universal property of Deligne's category $\uRep^{ab}(S_d)$. Along the way, we classify tensor ideals in the category $\uRep(S_d)$.
Comment: 19 pages
Comment: 19 pages
Externí odkaz:
http://arxiv.org/abs/1304.3491
Autor:
Comes, Jonathan
We give a classification of ideals in Rep(GL_\delta) for arbitrary \delta.
Comment: minor corrections
Comment: minor corrections
Externí odkaz:
http://arxiv.org/abs/1201.5669
Autor:
Comes, Jonathan, Wilson, Benjamin
We classify indecomposable summands of mixed tensor powers of the natural representation for the general linear supergroup up to isomorphism. We also give a formula for the characters of these summands in terms of composite supersymmetric Schur polyn
Externí odkaz:
http://arxiv.org/abs/1108.0652
Autor:
Comes, Jonathan, Kujawa, Jonathan R.
Deligne has defined a category which interpolates among the representations of the various symmetric groups. In this paper we show Deligne's category admits a unique nontrivial family of modified trace functions. Such modified trace functions have al
Externí odkaz:
http://arxiv.org/abs/1103.2082