Zobrazeno 1 - 10
of 45
pro vyhledávání: '"Combinatorial manifolds"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Sakai, Katsuro
Publikováno v:
Proceedings of the American Mathematical Society, 1987 Jul 01. 100(3), 574-578.
Externí odkaz:
https://www.jstor.org/stable/2046450
Autor:
Fulvia Spaggiari, Alberto Cavicchioli
The goal of this paper is to give some theorems which relate to the problem of classifying combinatorial (resp. smooth) closed manifolds up to piecewise-linear (PL) homeomorphism. For this, we use the combinatorial approach to the topology of PL mani
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::de67d1427f4a92337b4d3f7dcee205d3
https://hdl.handle.net/11380/1185003
https://hdl.handle.net/11380/1185003
Autor:
Venturello, Lorenzo
Simplicial complexes are mathematical objects whose importance stretches from topology to commutative algebra and combinatorics. In this thesis we focus on the family of balanced simplicial complexes. A d-dimensional simplicial complex is balanced if
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Nicolas Ariel Capitelli
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
We introduce the non-pure versions of simplicial balls and spheres with minimum number of vertices. These are a special type of non-homogeneous balls and spheres (NH-balls and NH-spheres) satisfying a minimality condition on the number of maximal sim
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::812a678ecafaee8a6cc8b7292c3e1003
http://www.sciencedirect.com/science/article/pii/S0925772116300451
http://www.sciencedirect.com/science/article/pii/S0925772116300451
A generalization of a result of Dong and Santos–Sturmfels on the Alexander dual of spheres and balls
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
We prove a generalization of a result by Dong and Santos-Sturmfels about the homotopy type of the Alexander dual of balls and spheres. Our results involve NH-manifolds, which were recently introduced as the non-homogeneous (or non-pure) counterpart o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::32fc48142a7db89ef711ae951da76e17
http://www.sciencedirect.com/science/article/pii/S0097316515001284
http://www.sciencedirect.com/science/article/pii/S0097316515001284
Autor:
Ed Swartz
Publikováno v:
Advances in Mathematics. 219(5):1722-1728
The number of PL-homeomorphism types of combinatorial manifolds in a fixed dimension with an upper bound on g2 is finite.
Autor:
Capitelli, Nicolás Ariel
Publikováno v:
Biblioteca Digital (UBA-FCEN)
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
En esta Tesis introducimos la teoría de NH-variedades, una extensión de la teoríaclásica de variedades combinatorias al contexto no homogéneo. Las NH-variedades poseenuna estructura local que consiste en versiones simpliciales de espacios euclí
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3056::d74d51805d1105372a282656182ee099
In this paper we extend the classical theory of combinatorial manifolds to the non-homogeneous setting. NH-manifolds are polyhedra which are locally like Euclidean spaces of varying dimensions. We show that many of the properties of classical manifol
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::813767f84a0896c3ff71f358c730a1e7
http://arxiv.org/abs/1108.4955
http://arxiv.org/abs/1108.4955