Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Combe, Noemie C."'
Autor:
Combe, Noémie C.
We consider the cone of concentration matrices related to linear concentration models and Wishart laws. We prove that this cone is a Monge--Amp\`ere domain and that the log-likelihood function generates its potential function at the identity. The tan
Externí odkaz:
http://arxiv.org/abs/2501.01345
Autor:
Combe, Noemie C.
An important object appearing in the framework of the Tomita--Takesaki theory is an invariant cone under the modular automorphism group of von Neumann algebras. As a result of the connection between von Neumann algebras and quantum field theory, von
Externí odkaz:
http://arxiv.org/abs/2412.12289
Autor:
Combe, Noémie C.
Dually flat statistical manifolds provide a rich toolbox for investigations around the learning process. We prove that such manifolds are Monge-Amp\`ere manifolds. Examples of such manifolds include the space of exponential probability distributions
Externí odkaz:
http://arxiv.org/abs/2412.04407
Autor:
Combe, Noémie. C.
The purpose of this article is to show that flat compact K\"ahler manifolds exhibit the structure of a Frobenius manifold, a structure originating in 2D Topological Quantum Field Theory and closely related to Joyce structure. As a result, we classify
Externí odkaz:
http://arxiv.org/abs/2411.14362
Autor:
Combe, Noémie C.
Kontsevich suggested that the Landau-Ginzburg model presents a good formalism for homological mirror symmetry. In this paper we propose to investigate the LG theory from the viewpoint of Koopman-von Neumann's construction. New advances are thus provi
Externí odkaz:
http://arxiv.org/abs/2409.00835
Autor:
Combe, Noemie C.
We prove that in any strictly convex symmetric cone $\Omega$ there exists a non empty locus where the WDVV equation is satisfied (i.e. there exists a hyperplane being a Frobenius manifold). This result holds over any real division algebra (with a res
Externí odkaz:
http://arxiv.org/abs/2309.04334
Autor:
Combe, Noemie C.
New relations between algebraic geometry, information theory and Topological Field Theory are developed. One considers models of databases subject to noise i.e. probability distributions on finite sets, related to exponential families. We prove expli
Externí odkaz:
http://arxiv.org/abs/2110.02607
In this note, we sketch an approach to the problems of equivariant birational geometry developed by M. Kontsevich and Yu. Tschinkel, where Burnside invariants were introduced. We are making explicit the role of Nori constructions in this environment.
Externí odkaz:
http://arxiv.org/abs/2012.13814
A part of Grothendieck's program for studying the Galois group $G_{\mathbb Q}$ of the field of all algebraic numbers $\overline{\mathbb Q}$ emerged from his insight that one should lift its action upon $\overline{\mathbb Q}$ to the action of $G_{\mat
Externí odkaz:
http://arxiv.org/abs/2006.13663
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.