Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Colomer, M. Angels"'
Publikováno v:
In Ecological Modelling 10 June 2014 281:1-14
Publikováno v:
In Ecological Modelling 2011 222(1):33-47
Publikováno v:
In Journal of Hydrology 2007 338(1):113-121
Autor:
Martínez del Amor, Miguel Ángel, Pérez Hurtado de Mendoza, Ignacio, García Quismondo, Manuel, Macías Ramos, Luis Felipe, Valencia Cabrera, Luis, Romero Jiménez, Álvaro, Graciani Díaz, Carmen, Riscos Núñez, Agustín, Colomer, M. Angels, Pérez Jiménez, Mario de Jesús
Publikováno v:
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
instname
Population Dynamics P systems refer to a formal framework for ecological modelling. The semantics of the model associates probabilities to rules, but at the same time, the model is based on P systems, so the rules are applied in a maximally parallel
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::199f09152cc8afc93a4a055a830eba42
https://idus.us.es/handle/11441/34064
https://idus.us.es/handle/11441/34064
Publikováno v:
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
instname
In this work we present a P system based model of the ecosystem dynamics of plant communities. It is applied to four National Hunting Reservoirs in Catalan Pyrenees (Spain). In previous works several natural high- mountain- ecosystems and population
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::ecfea95d08f91ad45bb361adc3e5d148
https://idus.us.es/xmlui/handle/11441/39418
https://idus.us.es/xmlui/handle/11441/39418
Autor:
Colomer, M. Angels, Martínez del Amor, Miguel Ángel, Pérez Hurtado de Mendoza, Ignacio, Pérez Jiménez, Mario de Jesús, Riscos Núñez, Agustín
Publikováno v:
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
instname
In this paper, a P systems based general framework for modeling the dynamics of a population biology is presented. Multienvironment probabilistic functional P systems with active membranes provide the syntactical specification, and the semantics is c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::3a9ec59cb5219d05f77d74c1113df422
Autor:
Pérez Hurtado de Mendoza, Ignacio, Valencia Cabrera, Luis, Pérez Jiménez, Mario de Jesús, Colomer, M. Angels, Riscos Núñez, Agustín
Publikováno v:
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
instname
In recent years, the increasing importance of the computational systems biology is leading to an impressive growth of the knowledge of several real-life phenomena. In this framework, membrane computing is an emergent branch within natural computing t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::6366b3d80d78f4ed296789ac361979bc
Autor:
Colomer, M. Angels, Pérez Hurtado de Mendoza, Ignacio, Pérez Jiménez, Mario de Jesús, Riscos Núñez, Agustín
Publikováno v:
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
instname
P systems provide a high level computational modelling framework that combines the structural and dynamical aspects of ecosystems in a compressive and relevant way. The inherent randomness and uncertainty in biological systems is captured by using pr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=RECOLECTA___::1931026b83c4eb8ab6a551fce12e358a
Autor:
Martínez del Amor, Miguel Ángel, Pérez Hurtado de Mendoza, Ignacio, Pérez Jiménez, Mario de Jesús, Riscos Núñez, Agustín, Colomer, M. Angels
Publikováno v:
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
instname
Multienvironment P systems are the base of a general framework for modeling ecosystems dynamics. On one hand, this modeling framework represents the structural and dynamical aspects of real ecosystems in a discrete, modular and compressive way. On th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::634a9d74128325d005333001fb5e256a
Publikováno v:
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
instname
It is well known that any irreducible and aperiodic Markov chain has exactly one stationary distribution, and for any arbitrary initial distribution, the sequence of distributions at time n converges to the stationary distribution, that is, the Marko
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::4870791552e5d199afcf14dc527bdef7
https://idus.us.es/handle/11441/38857
https://idus.us.es/handle/11441/38857