Zobrazeno 1 - 10
of 838
pro vyhledávání: '"Collaborative Analytics"'
Enforcement of privacy regulation is essential for collaborative data analytics. In this work, we address a scenario in which two companies expect to securely join their datasets with respect to their common customers to maximize data insights. Apart
Externí odkaz:
http://arxiv.org/abs/2410.04746
Autor:
Peng, Xinyu, Han, Feng, Peng, Li, Liu, Weiran, Yan, Zheng, Kang, Kai, Zhang, Xinyuan, Wei, Guoxing, Sun, Jianling, Liu, Jinfei
This paper introduces MapComp, a novel view-based framework to facilitate join-group-aggregation (JGA) queries for collaborative analytics. Through specially crafted materialized view for join and novel design of group-aggregation (GA) protocols, Map
Externí odkaz:
http://arxiv.org/abs/2408.01246
Secure collaborative analytics (SCA) enable the processing of analytical SQL queries across multiple owners' data, even when direct data sharing is not feasible. Although essential for strong privacy, the large overhead from data-oblivious primitives
Externí odkaz:
http://arxiv.org/abs/2404.18388
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Computers & Education February 2024 209
Video Coding for Machines (VCM) is committed to bridging to an extent separate research tracks of video/image compression and feature compression, and attempts to optimize compactness and efficiency jointly from a unified perspective of high accuracy
Externí odkaz:
http://arxiv.org/abs/2110.09241
We present a relational MPC framework for secure collaborative analytics on private data with no information leakage. Our work targets challenging use cases where data owners may not have private resources to participate in the computation, thus, the
Externí odkaz:
http://arxiv.org/abs/2102.01048
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Poddar, Rishabh, Kalra, Sukrit, Yanai, Avishay, Deng, Ryan, Popa, Raluca Ada, Hellerstein, Joseph M.
Many organizations stand to benefit from pooling their data together in order to draw mutually beneficial insights -- e.g., for fraud detection across banks, better medical studies across hospitals, etc. However, such organizations are often prevente
Externí odkaz:
http://arxiv.org/abs/2010.13752
Publikováno v:
IEEE Access, Vol 10, Pp 34393-34403 (2022)
Data privacy regulations like the EU GDPR allow the use of hashing techniques to anonymize data that may contain personal information. However, cryptographic hashing is well-known to destroy any possibility of performing analytics. Homomorphic crypto
Externí odkaz:
https://doaj.org/article/1fb72c7078e147e1878c805d13acdbfa