Zobrazeno 1 - 10
of 236
pro vyhledávání: '"Colin Guillarmou"'
Publikováno v:
Oberwolfach Reports. 18:3067-3099
Autor:
Mihajlo Cekić, Colin Guillarmou
Publikováno v:
Communications in Mathematical Physics
Communications in Mathematical Physics, 2021, 386, pp.1289--1318. ⟨10.1007/s00220-021-04090-2⟩
Communications in Mathematical Physics, Springer Verlag, 2021, 386, pp.1289--1318. ⟨10.1007/s00220-021-04090-2⟩
Communications in Mathematical Physics, 2021, 386, pp.1289--1318. ⟨10.1007/s00220-021-04090-2⟩
Communications in Mathematical Physics, Springer Verlag, 2021, 386, pp.1289--1318. ⟨10.1007/s00220-021-04090-2⟩
We show, using semiclassical measures and unstable derivatives, that a smooth vector field X generating a contact Anosov flow on a 3-dimensional manifold $$\mathcal {M}$$ has only finitely many Ruelle resonances in the vertical strips $$\{ s\in \math
Publikováno v:
Acta Mathematica
Acta Mathematica, In press
HAL
Acta Mathematica, In press
HAL
The conformal bootstrap hypothesis is a powerful idea in theoretical physics which has led to spectacular predictions in the context of critical phenomena. It postulates an explicit expression for the correlation functions of a conformal field theory
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::58ecfcc37c651ca7e93e4345ef8ea498
https://hal.science/hal-02866510v2/document
https://hal.science/hal-02866510v2/document
Publikováno v:
HAL
For analytic negatively curved Riemannian manifold with analytic strictly convex boundary, we show that the scattering map for the geodesic flow determines the manifold up to isometry. In particular one recovers both the topology and the metric. More
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::55221fcc184a1bc80fbe7f86c608bf37
Publikováno v:
Annales Henri Lebesgue
Annales Henri Lebesgue, UFR de Mathématiques-IRMAR, 2021, 4, pp.81-119. ⟨10.5802/ahl.67⟩
Annales Henri Lebesgue, UFR de Mathématiques-IRMAR, 2021, 4, pp.81-119. ⟨10.5802/ahl.67⟩
We establish an equidistribution result for Ruelle resonant states on compact locally symmetric spaces of rank one. More precisely, we prove that among the first band Ruelle resonances there is a density one subsequence such that the respective produ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d7d363c2c33c8ccaecb696b61399964c
https://hal.archives-ouvertes.fr/hal-01827891
https://hal.archives-ouvertes.fr/hal-01827891
Publikováno v:
Annales de l'Institut Fourier
Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2020, 69 (7), pp.2857-2919. ⟨10.5802/aif.3339⟩
Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2020, 69 (7), pp.2857-2919. ⟨10.5802/aif.3339⟩
We consider the boundary rigidity problem for asymptotically hyperbolic manifolds. We show injectivity of the X-ray transform in several cases and consider the non-linear inverse problem which consists of recovering a metric from boundary measurement
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4c7c14e32d714faaca52cc0d6537b6d3
https://hal.archives-ouvertes.fr/hal-01827901/file/submitted.pdf
https://hal.archives-ouvertes.fr/hal-01827901/file/submitted.pdf
Publikováno v:
HAL
International Mathematics Research Notices
International Mathematics Research Notices, Oxford University Press (OUP), In press
International Mathematics Research Notices
International Mathematics Research Notices, Oxford University Press (OUP), In press
In this article, we study the properties of the geodesic X-ray transform for asymptotically Euclidean or conic Riemannian metrics and show injectivity under non-trapping and no conjugate point assumptions. We also define a notion of lens data for suc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::75263190027d2546c84e5da74ac78a1e
https://hal.archives-ouvertes.fr/hal-02324540
https://hal.archives-ouvertes.fr/hal-02324540
Publikováno v:
Analysis & PDE
Analysis & PDE, 2020, 13 (6), pp.1633-1670. ⟨10.2140/apde.2020.13.1633⟩
Anal. PDE 13, no. 6 (2020), 1633-1670
Analysis & PDE, Mathematical Sciences Publishers, 2020, 13 (6), pp.1633-1670. ⟨10.2140/apde.2020.13.1633⟩
Analysis & PDE, 2020, 13 (6), pp.1633-1670. ⟨10.2140/apde.2020.13.1633⟩
Anal. PDE 13, no. 6 (2020), 1633-1670
Analysis & PDE, Mathematical Sciences Publishers, 2020, 13 (6), pp.1633-1670. ⟨10.2140/apde.2020.13.1633⟩
We study eigenvalues of non-self-adjoint Schr\"odinger operators on non-trapping asymptotically conic manifolds of dimension $n\ge 3$. Specifically, we are concerned with the following two types of estimates. The first one deals with Keller type boun
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9fa26479c5385d1d931588c3c62c27c3
https://hal.archives-ouvertes.fr/hal-01827896/file/1709.09759.pdf
https://hal.archives-ouvertes.fr/hal-01827896/file/1709.09759.pdf
Publikováno v:
Inventiones Mathematicae
Inventiones Mathematicae, Springer Verlag, 2020, 220, pp.525-579
Inventiones Mathematicae, 2020, 220, pp.525-579. ⟨10.1007/s00222-019-00935-9⟩
HAL
Inventiones mathematicae
Inventiones Mathematicae, Springer Verlag, 2020, 220, pp.525-579. ⟨10.1007/s00222-019-00935-9⟩
Inventiones Mathematicae, Springer Verlag, 2020, 220, pp.525-579
Inventiones Mathematicae, 2020, 220, pp.525-579. ⟨10.1007/s00222-019-00935-9⟩
HAL
Inventiones mathematicae
Inventiones Mathematicae, Springer Verlag, 2020, 220, pp.525-579. ⟨10.1007/s00222-019-00935-9⟩
We study the twisted Ruelle zeta function $\zeta_X(s)$ for smooth Anosov vector fields $X$ acting on flat vector bundles over smooth compact manifolds. In dimension $3$, we prove Fried conjecture, relating Reidemeister torsion and $\zeta_X(0)$. In hi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d701a3b6b00b5a950250ec86346c27ad
https://hal.archives-ouvertes.fr/hal-01828967/document
https://hal.archives-ouvertes.fr/hal-01828967/document
Publikováno v:
ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE. :323-384