Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Cohomologie syntomique"'
Autor:
Gilles, Sally
Publikováno v:
Alg. Number Th. 17 (2023) 603-666
We give the geometric version of a construction of Colmez-Niziol which establishes a comparison theorem between arithmetic p-adic nearby cycles and syntomic sheaves. The local construction of the period isomorphism uses $(\phi,\Gamma)$-modules theory
Externí odkaz:
http://arxiv.org/abs/2101.04987
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Etesse, Jean-Yves
Syntomic cohomology here defined yields a link between rigid cohomology and etale cohomology, viewing the last one as the fixed points under Frobenius of the former one. Let V be a complete discrete valuation ring, with perfect residue field k = V/m
Externí odkaz:
http://arxiv.org/abs/0910.4436
Autor:
Sally Gilles
Publikováno v:
Théorie des nombres [math.NT]. Université de Lyon, 2020. Français. ⟨NNT : 2020LYSEN049⟩
Recently, Colmez and Nizioł proved a comparison theorem between arithmetic p-adic nearby cycles and syntomic cohomology sheaves. To prove it, they gave a local construction using (\phi,\Gamma)-modules which allows to reduce the period isomorphism to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::94633a3eb24b44127e56368b242ffb96
https://tel.archives-ouvertes.fr/tel-02965753/file/GILLES_Sally_2020LYSEN049_These.pdf
https://tel.archives-ouvertes.fr/tel-02965753/file/GILLES_Sally_2020LYSEN049_These.pdf
Autor:
Gilles, Sally
Publikováno v:
Théorie des nombres [math.NT]. Université de Lyon, 2020. Français. ⟨NNT : 2020LYSEN049⟩
Recently, Colmez and Nizioł proved a comparison theorem between arithmetic p-adic nearby cycles and syntomic cohomology sheaves. To prove it, they gave a local construction using (\phi,\Gamma)-modules which allows to reduce the period isomorphism to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::ccd766b1818fa25833a34935c98e36f7
https://theses.hal.science/tel-02965753
https://theses.hal.science/tel-02965753
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Etesse , Jean-Yves
Syntomic cohomology here defined yields a link between rigid cohomology and etale cohomology, viewing the last one as the fixed points under Frobenius of the former one. Let V be a complete discrete valuation ring, with perfect residue field k = V/m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=arXiv_dedup_::a81492c0bf333b929f12afb6aa4e03be
https://hal.archives-ouvertes.fr/hal-00425926/document
https://hal.archives-ouvertes.fr/hal-00425926/document
Autor:
Etesse, Jean-Yves
Syntomic cohomology here defined yields a link between rigid cohomology and etale cohomology, viewing the last one as the fixed points under Frobenius of the former one. Let V be a complete discrete valuation ring, with perfect residue field k = V/m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::13a7415fac39c17b276c58ab7ead4394
Autor:
Etesse , Jean-Yves
Let $k$ be a perfect field of characteristic $p>0$, $\mathcal{V}$ a complete discrete valuation ring with residue field $k$ and field of fractions $K$ of characteristic 0, and $S$ a separated $k$-scheme of finite type. When $S$ is smooth over $k$, we
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::16f3068bcbf2f639a534d424d1d371a9
http://arxiv.org/abs/0803.1580
http://arxiv.org/abs/0803.1580
Autor:
Caruso, Xavier
Publikováno v:
Mathématiques [math]. Université Paris-Nord-Paris XIII, 2005. Français
The aim of this thesis is to give a complete proof of the tame inertia Serre's conjecture which gives constraints (in relation to e and r) on the Galois group of cohomology H^r_et(X_Kbar, Z/pZ) where X is a proper smooth variety with semi-stable redu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::cbed1df5d76070d5d4e64ca4418baf4d
https://hal.archives-ouvertes.fr/hal-00009201/document
https://hal.archives-ouvertes.fr/hal-00009201/document