Zobrazeno 1 - 10
of 829
pro vyhledávání: '"Cohen, Joel E"'
Taylor's power law (TL) or fluctuation scaling has been verified empirically for the abundances of many species, human and non-human, and in many other fields including physics, meteorology, computer science, and finance. TL asserts that the variance
Externí odkaz:
http://arxiv.org/abs/2408.16023
Autor:
Cohen, Joel E.
Based on the primes less than $4 \times 10^{18}$, Oliveira e Silva et al. (2014) conjectured an asymptotic formula for the sum of the $k$th power of the gaps between consecutive primes less than a large number $x$. We show that the conjecture of Oliv
Externí odkaz:
http://arxiv.org/abs/2405.16019
Autor:
Abel, Guy, Cohen, Joel E.
Data on stocks and flows of international migration are necessary to understand migrant patterns and trends and to monitor and evaluate migration-relevant international development agendas. Many countries do not publish data on bilateral migration fl
Externí odkaz:
http://epub.wu.ac.at/7075/1/s41597%2D019%2D0089%2D3.pdf
Autor:
Cohen, Joel E.
Publikováno v:
Mathematics Magazine 96(4):428-432, 2023
In 1845, Bertrand conjectured that twice any prime strictly exceeds the next prime. Tchebichef proved Bertrand's postulate in 1850. In 1934, Ishikawa proved a stronger result: the sum of any two consecutive primes strictly exceeds the next prime, exc
Externí odkaz:
http://arxiv.org/abs/2305.03821
Autor:
Cohen, Joel E., Huillet, Thierry E
In a family of random variables, Taylor's law or Taylor's power law offluctuation scaling is a variance function that gives the variance $\sigma^{2}>0$ of a random variable (rv) $X$ with expectation $\mu >0$ as a powerof $\mu$: $\sigma ^{2}=A\mu ^{b}
Externí odkaz:
http://arxiv.org/abs/2206.13283
Autor:
Altenberg, Lee, Cohen, Joel E.
Publikováno v:
Linear Algebra and its Applications 606 (2020) 201-218
Let ${\bf A} \in R^{n \times n}$ be a nonnegative irreducible square matrix and let $r({\bf A})$ be its spectral radius and Perron-Frobenius eigenvalue. Levinger asserted and several have proven that $r(t):=r((1{-}t) {\bf A} + t {\bf A}^\top)$ increa
Externí odkaz:
http://arxiv.org/abs/2007.02618
Publikováno v:
In Theoretical Population Biology December 2023 154:118-125
Publikováno v:
Proceedings of the National Academy of Sciences of the United States of America, 2021 Nov . 118(46), 1-9.
Externí odkaz:
https://www.jstor.org/stable/27093878
Publikováno v:
Proceedings of the National Academy of Sciences of the United States of America; 10/1/2024, Vol. 121 Issue 40, p1-31, 41p
Autor:
Cohen, Joel E.
Publikováno v:
Demographic Research, 2021 Jan 01. 44, 1165-1184.
Externí odkaz:
https://www.jstor.org/stable/27032951