Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Cogolludo Agustín, José I."'
We describe those Weil divisors of cyclic quotient surface singularities which are (abstract) $r$--tuple curve singularities.
Comment: 18 pages
Comment: 18 pages
Externí odkaz:
http://arxiv.org/abs/2410.15878
The higher order degrees are Alexander-type invariants of complements to an affine plane curve. In this paper we characterize the vanishing of such invariants for transversal unions of plane curves $C'$ and $C''$ in terms of the finiteness, the vanis
Externí odkaz:
http://arxiv.org/abs/2002.07949
The purpose of this paper is to exhibit infinite families of conjugate projective curves in a number field whose complement have the same abelian fundamental group, but are non-homeomorphic. In particular, for any $d>3$ we find Zariski tuples paramet
Externí odkaz:
http://arxiv.org/abs/1904.09305
Publikováno v:
Geom. Topol. 22 (2018) 3979-4011
Even Artin groups generalize right-angled Artin groups by allowing the labels in the defining graph to be even. In this paper a complete characterization of quasi-projective even Artin groups is given in terms of their defining graphs. Also, it is sh
Externí odkaz:
http://arxiv.org/abs/1803.05274
This paper deals with a complete invariant $R_X$ for cyclic quotient surface singularities. This invariant appears in the Riemann Roch and Numerical Adjunction Formulas for normal surface singularities. Our goal is to give an explicit formula for $R_
Externí odkaz:
http://arxiv.org/abs/1503.02487
Autor:
Cogolludo‐Agustín, José I.1 (AUTHOR), Elduque, Eva2 (AUTHOR) eva.elduque@uam.es
Publikováno v:
Mathematische Nachrichten. Mar2023, Vol. 296 Issue 3, p1026-1040. 15p.
Publikováno v:
J. Inst. Math. Jussieu 13 (2014), no. 3, 633-670
In this work we describe a method to reconstruct the braid monodromy of the preimage of a curve by a Kummer cover. This method is interesting, since it combines two techniques, namely, the reconstruction of a highly non-generic braid monodromy with a
Externí odkaz:
http://arxiv.org/abs/1205.5427
Publikováno v:
Algebr. Geom. Topol. 12 (2012) 1265-1272
In this note, we present a new method for computing fundamental groups of curve complements using a variation of the Zariski-Van Kampen method on general ruled surfaces. As an application we give an alternative (computation-free) proof for the fundam
Externí odkaz:
http://arxiv.org/abs/1201.3274
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.