Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Coello, Carlos Coello"'
Evolutionary algorithms have been successfully applied to attacking Physically Unclonable Functions (PUFs). CMA-ES is recognized as the most powerful option for a type of attack called the reliability attack. While there is no reason to doubt the per
Externí odkaz:
http://arxiv.org/abs/2202.08079
Autor:
Planinic, Lucija, Djurasevic, Marko, Mariot, Luca, Jakobovic, Domagoj, Picek, Stjepan, Coello, Carlos Coello
This paper investigates the influence of genotype size on evolutionary algorithms' performance. We consider genotype compression (where genotype is smaller than phenotype) and expansion (genotype is larger than phenotype) and define different strateg
Externí odkaz:
http://arxiv.org/abs/2105.11502
Publikováno v:
In Swarm and Evolutionary Computation May 2019 46:140-153
Publikováno v:
In Information Sciences December 2017 418-419:346-362
[Excerpt] EMO is a biennial international conference series devoted to the theory and practice of evolutionary multi-criterion optimization. The first EMO took place in 2001 in Zürich (Switzerland), with later conferences taking place in Faro (Portu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______307::6281158066e6b9e89403e1a1e8e4f437
https://hdl.handle.net/1822/53109
https://hdl.handle.net/1822/53109
Autor:
Cheng, Ran, Jin, Yaochu, Narukawa, Kaname, Gaspar-Cunha, António, Henggeler Antunes, Carlos, Coello, Carlos Coello
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783319159331
EMO (1)
EMO (1)
Inverse model based multiobjective evolutionary algorithm aims to sample candidate solutions directly in the objective space, which makes it easier to control the diversity of non-dominated solutions in multiobjective optimization. To facilitate the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c7d24f61fb3b25cd614a4b8925c29a49
https://pub.uni-bielefeld.de/record/2978529
https://pub.uni-bielefeld.de/record/2978529
Publikováno v:
Soft Computing - A Fusion of Foundations, Methodologies & Applications; Oct2018, Vol. 22 Issue 19, p6595-6616, 22p
Publikováno v:
2016 IEEE Congress on Evolutionary Computation (CEC); 2016, p4191-4198, 8p