Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Codony, David"'
We review the authors' recent works on flexoelectricity at the nanoscale [arXiv:2010.01747, arXiv:2010.13899], while emphasizing the role of continuum mechanics in interpreting the electromechanical response of quantum mechanical systems under bendin
Externí odkaz:
http://arxiv.org/abs/2304.00628
The flexoelectric effect, coupling polarization and strain gradient as well as strain and electric field gradients, is universal to dielectrics, but, as compared to piezoelectricity, it is more difficult to harness as it requires field gradients and
Externí odkaz:
http://arxiv.org/abs/2303.09448
In a recent letter [Phys. Rev. Lett. 127, 216801 (2021)], the authors introduced the effective flexoelectric coefficient $\mu^\textrm{2D}$ for quantifying the flexoelectric effect in 2D systems, and reported a disagreement with the flexoelectric coef
Externí odkaz:
http://arxiv.org/abs/2203.06132
We calculate transversal flexoelectric coefficients along the principal directions for fifty select atomic monolayers using ab initio Density Functional Theory (DFT). Specifically, considering representative materials from each of Groups IV, III-V, V
Externí odkaz:
http://arxiv.org/abs/2010.13899
Publikováno v:
Phys. Rev. Materials 5, 030801 (2021)
We present a novel formulation for calculating the transversal flexoelectric coefficient of nanostructures at finite deformations from first principles. Specifically, we introduce the concept of \emph{radial polarization} to make the coefficient a we
Externí odkaz:
http://arxiv.org/abs/2010.01747
We propose a $\mathcal{C}^0$ Interior Penalty Method (C0-IPM) for the computational modelling of flexoelectricity, with application also to strain gradient elasticity, as a simplified case. Standard high-order $\mathcal{C}^0$ finite element approxima
Externí odkaz:
http://arxiv.org/abs/2008.12391
This paper develops the equilibrium equations describing the flexoelectric effect in soft dielectrics under large deformations. Previous works have developed related theories using a flexoelectric coupling tensor of mixed material-spatial character.
Externí odkaz:
http://arxiv.org/abs/2008.09045
This paper develops a computational framework with unfitted meshes to solve linear piezoelectricity and flexoelectricity electromechanical boundary value problems including strain gradient elasticity at infinitesimal strains. The high-order nature of
Externí odkaz:
http://arxiv.org/abs/1902.02567
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.