Zobrazeno 1 - 10
of 1 297
pro vyhledávání: '"Code smell"'
Publikováno v:
International Journal of Quality & Reliability Management, 2023, Vol. 41, Issue 9, pp. 2386-2399.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/IJQRM-08-2022-0254
Publikováno v:
IEEE Access, Vol 12, Pp 53664-53676 (2024)
(1) Background: Code smell is the most popular and reliable method for detecting potential errors in code. In real-world circumstances, a single source code may have multiple code smells. Multi-label code smell detection is a popular research study.
Externí odkaz:
https://doaj.org/article/f39d7c7bdd004a35abb888a8c6d53730
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Hamoud Aljamaan
Publikováno v:
PeerJ Computer Science, Vol 10, p e2254 (2024)
Code smells refer to poor design and implementation choices by software engineers that might affect the overall software quality. Code smells detection using machine learning models has become a popular area to build effective models that are capable
Externí odkaz:
https://doaj.org/article/b856c6e569934f9c969fad86c8710a80
Pengujian Kualitas Coding Pada Aplikasi Bank Sampah DLHK Kota Pekanbaru Menggunakan Code Smell Tools
Publikováno v:
Jurnal Komputer Terapan, Vol 10, Iss 1 (2024)
Kualitas dari kode program akan mempengaruhi kemampuan perangkat lunak untuk dapat mudah dimodifikasi dan dikembangkan serta dipelihara. Code smells merupakan suatu karakteristik dari perangkat lunak yang mengindikasikan permasalahan pada kode dan de
Externí odkaz:
https://doaj.org/article/cfceb060023a464591a0b39064cea525
Autor:
Sadi Alawadi, Khalid Alkharabsheh, Fahed Alkhabbas, Victor R. Kebande, Feras M. Awaysheh, Fabio Palomba, Mohammed Awad
Publikováno v:
IEEE Access, Vol 12, Pp 44888-44904 (2024)
Software quality is critical, as low quality, or “Code smell,” increases technical debt and maintenance costs. There is a timely need for a collaborative model that detects and manages code smells by learning from diverse and distributed data sou
Externí odkaz:
https://doaj.org/article/25e1d0a0fe8546fbb329d4970f0edef5
Publikováno v:
IEEE Access, Vol 12, Pp 14061-14082 (2024)
Code smell indicates inadequacies in design and implementation choices. Code smells harm software maintainability including effects on components’ bug proneness and code quality has been demonstrated in previous studies. This study aims to investig
Externí odkaz:
https://doaj.org/article/5a8b603ffc5b4e7ca2882ee05b76d3b8
Publikováno v:
Applied Sciences, Vol 14, Iss 14, p 6149 (2024)
Code smells are early warning signs of potential issues in software quality. Various techniques are used in code smell detection, including the Bayesian approach, rule-based automatic antipattern detection, antipattern identification utilizing B-spli
Externí odkaz:
https://doaj.org/article/0cbf56c35776470da589e2a26f280f6d
Autor:
Shivani Jain, Anju Saha
Publikováno v:
e-Informatica Software Engineering Journal, Vol 18, Iss 1 (2024)
Background: Continuous modifications, suboptimal software design practices, and stringent project deadlines contribute to the proliferation of code smells. Detecting and refactoring these code smells are pivotal to maintaining complex and essential s
Externí odkaz:
https://doaj.org/article/1f4c5b385051401e97b1698c0d404ed5
Autor:
Aakanshi Gupta, Rashmi Gandhi, Nishtha Jatana, Divya Jatain, Sandeep Kumar Panda, Janjhyam Venkata Naga Ramesh
Publikováno v:
IEEE Access, Vol 11, Pp 119146-119160 (2023)
Presence of code smells complicate the source code and can obstruct the development and functionality of the software project. As they represent improper behavior that might have an adverse effect on software maintenance, code smells are behavioral i
Externí odkaz:
https://doaj.org/article/2b67db5177554d63b7f7abe9f9cb1156