Zobrazeno 1 - 10
of 383
pro vyhledávání: '"Cockburn, Bernardo"'
We show how to reduce the computational time of the practical implementation of the Raviart-Thomas mixed method for second-order elliptic problems. The implementation takes advantage of a recent result which states that certain local subspaces of the
Externí odkaz:
http://arxiv.org/abs/2309.15346
In J. Sci. Comput., 81: 2188-2212, 2019, we considered a superconvergent hybridizable discontinuous Galerkin (HDG) method, defined on simplicial meshes, for scalar reaction diffusion equations and showed how to define an interpolatory version which m
Externí odkaz:
http://arxiv.org/abs/2009.00704
Publikováno v:
J. Sci. Comput. 81 (2019), no. 3, 2188-2212
In our earlier work [8], we approximated solutions of a general class of scalar parabolic semilinear PDEs by an interpolatory hybridizable discontinuous Galerkin (Interpolatory HDG) method. This method reduces the computational cost compared to stand
Externí odkaz:
http://arxiv.org/abs/1905.12055
Autor:
Cockburn, Bernardo
We establish that the Weak Galerkin methods are rewritings of the hybridizable discontinuous Galerkin methods.
Externí odkaz:
http://arxiv.org/abs/1812.08146
Publikováno v:
Journal of Scientific Computing, vol. 79, no. 3, 2019, 1777-1800
We propose the interpolatory hybridizable discontinuous Galerkin (Interpolatory HDG) method for a class of scalar parabolic semilinear PDEs. The Interpolatory HDG method uses an interpolation procedure to efficiently and accurately approximate the no
Externí odkaz:
http://arxiv.org/abs/1811.09667
We find new discrete $H^1$- and Poincar\'e-Friedrichs inequalities by studying the invertibility of the DG approximation of the flux for local spaces admitting M-decompositions. We then show how to use these inequalities to define and analyze new, su
Externí odkaz:
http://arxiv.org/abs/1808.05709
Publikováno v:
In Computer Methods in Applied Mechanics and Engineering 1 June 2022 396
Autor:
Cockburn, Bernardo, Xia, Shiqiang
Publikováno v:
In Journal of Computational Physics 15 May 2022 457
Autor:
Cockburn, Bernardo, Fu, Guosheng
We propose a new tool, which we call $M$-decompositions, for devising superconvergent hybridizable discontinuous Galerkin (HDG) methods and hybridized-mixed methods for linear elasticity with strongly symmetric approximate stresses on unstructured po
Externí odkaz:
http://arxiv.org/abs/1704.04512
Autor:
Cockburn, Bernardo, Xia, Shiqiang
Publikováno v:
In Journal of Computational Physics 15 January 2022 449