Zobrazeno 1 - 10
of 4 597
pro vyhledávání: '"Cockayne, A"'
Gaussian processes are notorious for scaling cubically with the size of the training set, preventing application to very large regression problems. Computation-aware Gaussian processes (CAGPs) tackle this scaling issue by exploiting probabilistic lin
Externí odkaz:
http://arxiv.org/abs/2410.08796
Kalman filtering and smoothing are the foundational mechanisms for efficient inference in Gauss-Markov models. However, their time and memory complexities scale prohibitively with the size of the state space. This is particularly problematic in spati
Externí odkaz:
http://arxiv.org/abs/2405.08971
Electromagnetic radiation plays a crucial role in various physical and chemical processes. Hence, almost all astrophysical simulations require some form of radiative transfer model. Despite many innovations in radiative transfer algorithms and their
Externí odkaz:
http://arxiv.org/abs/2211.12547
Autor:
Melissa Pyle, Lucy Loftus, Richard Emsley, Daniel Freeman, Steven Gillard, Andrew Gumley, Justyna Sierpatowska, Lisa Wood, Rory C. O’Connor, Paul Pfeiffer, Sharon Anne Simpson, Nicole Cockayne, Gemma Shields, Ariane Beckley, Helen Beckwith, Maria Filippidou, Callum Glen, Stephanie Allan, Raj Hazzard, Eleanor Longden, Heather Peel, Mark Larsen, Sandra Bucci, Anthony P. Morrison
Publikováno v:
Trials, Vol 25, Iss 1, Pp 1-18 (2024)
Abstract Background People with serious mental health problems (SMHP) are more likely to be admitted to psychiatric hospital following contact with crisis services. Admissions can have significant personal costs, be traumatic and are the most expensi
Externí odkaz:
https://doaj.org/article/d8f8a6b657044f61bf7c2cdd511ad029
We analyse the calibration of BayesCG under the Krylov prior, a probabilistic numeric extension of the Conjugate Gradient (CG) method for solving systems of linear equations with symmetric positive definite coefficient matrix. Calibration refers to t
Externí odkaz:
http://arxiv.org/abs/2208.03885
Autor:
Lintermans, Mark, Lutz, Maiko, Whiterod, Nick S., Gruber, Bernd, Hammer, Michael P., Kennard, Mark J., Morgan, David L., Raadik, Tarmo A., Unmack, Peter, Brooks, Steven, Ebner, Brendan C., Gilligan, Dean, Butler, Gavin L., Moore, Glenn, Brown, Culum, Freeman, Rob, Kerezsy, Adam, Bice, Chris M., Le Feuvre, Matthew C., Beatty, Stephen, Arthington, Angela H., Koehn, John, Larson, Helen K., Coleman, Rhys, Mathwin, Rupert, Pearce, Luke, Tonkin, Zeb, Bruce, Andrew, Espinoza, Tom, Kern, Pippa, Lieschke, Jason A., Martin, Keith, Sparks, John, Stoessel, Daniel J., Wedderburn, Scotte D., Allan, Hugh, Clunie, Pam, Cockayne, Bernie, Ellis, Iain, Hardie, Scott, Koster, Wayne, Moy, Karl, Roberts, David, Schmarr, David, Sharley, Joanne, Sternberg, David, Zukowski, Sylvia, Walsh, Chris, Zampatti, Brenton, Shelley, James J., Sayer, Catherine, Chapple, David G.
Publikováno v:
In Biological Conservation December 2024 300
The statistical finite element method (StatFEM) is an emerging probabilistic method that allows observations of a physical system to be synthesised with the numerical solution of a PDE intended to describe it in a coherent statistical framework, to c
Externí odkaz:
http://arxiv.org/abs/2111.07691
Autor:
Nuwan Darshana Wickramasinghe, Tine Van Bortel, Diana Rose, Chantal Van Audenhove, Graham Thornicroft, Samantha Treacy, Norman Sartorius, Nicholas Glozier, Athula Sumathipala, Teresa Duarte, Antonio Lasalvia, Chiara Bonetto, Shuntaro Ando, Isabella Goldie, Kristian Wahlbeck, Giuseppe Rossi, Fredrica Nyqvist, Wolfgang Gaebel, Jaap van Weeghel, Evelien Brouwers, Nicole Cockayne, Elaine Brohan, Gert Scheerder, Nashi Khan, Uta Ouali, Vesna Svab, Doaa Nader, Nadia Kadri, Maria Fatima Monteiro, Lee Knifton, Neil Quinn, Esa Aromaa, Johanna Nordmyr, Carolina Herberts, Oliver Lewis, Jasna Russo, Dorottya Karsay, Rea Maglajlic, Silvia Zoppei, Doriana Cristofalo, Else Tambuyzer, Valentina Hristakeva, Dimitar Germanov, Harald Zaske, Marina Economou, Eleni Louki, Lily Peppou, Klio Geroulanou, Judit Harangozo, Julia Sebes, Gabor Csukly, Mariangela Lanfredi, Laura Pedrini, Arunas Germanavicius, Natalja Markovskaja, Vytis Valantinas, Jenny Boumans, Eleonoor Willemsen, Annette Plooy, Fatima Jorge Monteiro, Radu Teodorescu, Iuliana Radu, Elena Pana, Janka Hurova, Dita Leczova, Nina Konecnik, Blanca Reneses, Juan J Lopez-Ibor, Nerea Palomares, Camila Bayon, Alp Uçok, Gulsah Karaday
Publikováno v:
BMJ Open, Vol 14, Iss 6 (2024)
Objectives Workplace stigmatisation and discrimination are significant barriers to accessing employment opportunities, reintegration and promotion in the workforce for people with mental illnesses in comparison to other disabilities. This paper prese
Externí odkaz:
https://doaj.org/article/fec1e5afa136478d91b2ba98492903b7
Publikováno v:
Stat. Comput. 31(5):no. 55, 20pp., 2021
The numerical solution of differential equations can be formulated as an inference problem to which formal statistical approaches can be applied. However, nonlinear partial differential equations (PDEs) pose substantial challenges from an inferential
Externí odkaz:
http://arxiv.org/abs/2104.12587