Zobrazeno 1 - 10
of 1 453
pro vyhledávání: '"Closed manifold"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Wen Shuai Jiang
Publikováno v:
Acta Mathematica Sinica, English Series. 37:1751-1767
In this paper, we consider Ricci flow on four dimensional closed manifold with bounded scalar curvature, noncollasping volume and bounded diameter. Under such conditions, we can show that the manifold has finitely many diffeomorphism types, which gen
Autor:
Frédéric Robert, Jérôme Vétois
Publikováno v:
International Mathematics Research Notices. 2023:901-931
Given a closed manifold $(M^n,g)$, $n\geq 3$, Druet [5, 7] proved that a necessary condition for the existence of energy-bounded blowing-up solutions to perturbations of the equation $$ \begin{align*} &\Delta_gu+h_0u=u^{\frac{n+2}{n-2}},\ u>0 \ \text
Autor:
Alberto Abbondandolo, Pietro Majer
Publikováno v:
Journal of Topology and Analysis. :1-57
We prove that a Morse-Smale gradient-like flow on a closed manifold has a "system of compatible invariant stable foliations" that is analogous to the object introduced by Palis and Smale in their proof of the structural stability of Morse-Smale diffe
Autor:
Xin Zhou, Antoine Song
Publikováno v:
Geometric and Functional Analysis. 31:948-980
Let $$M^{n+1}$$ be a closed manifold of dimension $$3\le n+1\le 7$$ . We show that for a $$C^\infty $$ -generic metric g on M, to any connected, closed, embedded, 2-sided, stable, minimal hypersurface $$S\subset (M,g)$$ corresponds a sequence of clos
Autor:
Alexandre Rocha
Publikováno v:
Regular and Chaotic Dynamics. 26:293-304
Let $$M$$ be a closed manifold and $$L$$ an exact magnetic Lagrangian. In this paper we prove that there exists a residual set $$\mathcal{G}$$ of $$H^{1}\left(M;\mathbb{R}\right)$$ such that the property $${\widetilde{\mathcal{M}}}\left(c\right)={\wi
Autor:
Tianyu Wang, Daniel J. Thompson
Publikováno v:
Communications in Mathematical Physics. 385:1213-1243
We consider the geodesic flow for a rank one non-positive curvature closed manifold. We prove an asymptotic version of the Central Limit Theorem for families of measures constructed from regular closed geodesics converging to the Bowen-Margulis-Kniep
Autor:
Shu Shen, Jianqing Yu
Publikováno v:
Journal de l’École polytechnique — Mathématiques. 8:585-607
We introduce a Milnor metric on the determinant line of the cohomology of the underlying closed manifold with coefficients in a flat vector bundle, by means of interactions between the fixed points and the closed orbits of a Morse-Smale flow. This al
Publikováno v:
Mathematische Annalen. 379:1605-1622
Answering a question of Uspenskij, we prove that if X is a closed manifold of dimension 2 or higher or the Hilbert cube, then the universal minimal flow of $${\text {Homeo}}(X)$$ is not metrizable. In dimension 3 or higher, we also show that the mini
Autor:
Christoforos Neofytidis
Publikováno v:
Geometriae Dedicata. 213:325-337
A long-standing conjecture asserts that any Anosov diffeomorphism of a closed manifold is finitely covered by a diffeomorphism which is topologically conjugate to a hyperbolic automorphism of a nilpotent manifold. In this paper, we show that any clos