Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Clifton R. Baker"'
Autor:
Jeremiah R. Brown, Todd A. MacKenzie, Thomas M. Maddox, James Fly, Thomas T. Tsai, Mary E. Plomondon, Christopher D. Nielson, Edward D. Siew, Frederic S. Resnic, Clifton R. Baker, John S. Rumsfeld, Michael E. Matheny
Publikováno v:
Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease, Vol 4, Iss 12, Pp n/a-n/a (2015)
Background Acute kidney injury (AKI) occurs frequently after cardiac catheterization and percutaneous coronary intervention. Although a clinical risk model exists for percutaneous coronary intervention, no models exist for both procedures, nor do exi
Externí odkaz:
https://doaj.org/article/8a046d5a5be04eebab43bbd8d527ed88
Autor:
Ivan Protsyuk, Martin G. Seneviratne, Andre Saraiva, Natalie Harris, Hugh Montgomery, Mustafa Suleyman, Xavier Glorot, Dominic King, Jack W. Rae, Clifton R. Baker, Alistair Connell, Suman V. Ravuri, Trevor Back, Clemens Meyer, Nenad Tomasev, Harry Askham, Michal Zielinski, Ruth M. Reeves, Joseph R. Ledsam, Shakir Mohamed, Thomas F. Osborne, Cian Hughes, Chris Laing, Alan Karthikesalingam, Valerio Magliulo, Anne Mottram, Christopher Nielson, Sebastien Baur, Julien Cornebise, Demis Hassabis, Geraint Rees
Publikováno v:
Nature Protocols. 16:2765-2787
Early prediction of patient outcomes is important for targeting preventive care. This protocol describes a practical workflow for developing deep-learning risk models that can predict various clinical and operational outcomes from structured electron
Autor:
Hugh Montgomery, Alan Karthikesalingam, Xavier Glorot, Christopher Nielson, Harry Askham, Suman V. Ravuri, Trevor Back, Joseph R. Ledsam, Michal Zielinski, Kelly S. Peterson, Geraint Rees, Alistair Connell, Nenad Tomasev, Julien Cornebise, Ivan Protsyuk, Andre Saraiva, Demis Hassabis, Cian Hughes, Chris Laing, Ruth M. Reeves, Shakir Mohamed, Dominic King, Anne Mottram, Jack W. Rae, Mustafa Suleyman, Clemens Meyer, Clifton R. Baker
Publikováno v:
Nature
The early prediction of deterioration could have an important role in supporting healthcare professionals, as an estimated 11% of deaths in hospital follow a failure to promptly recognize and treat deteriorating patients1. To achieve this goal requir
Autor:
Ozgur Ozmen, Merry Ward, Byung H. Park, Makoto Jones, Everett Rush, Kathryn Knight, Jonathan R. Nebeker, Clifton R. Baker
Publikováno v:
CBMS
DOE / OSTI
DOE / OSTI
The process of identifying a cohort of interest is a very challenging task. It requires manually inspecting many patient records of complex structure that might include medical coding errors and missing data. This paper presents a computational pipel
Autor:
Nenad, Tomašev, Natalie, Harris, Sebastien, Baur, Anne, Mottram, Xavier, Glorot, Jack W, Rae, Michal, Zielinski, Harry, Askham, Andre, Saraiva, Valerio, Magliulo, Clemens, Meyer, Suman, Ravuri, Ivan, Protsyuk, Alistair, Connell, Cían O, Hughes, Alan, Karthikesalingam, Julien, Cornebise, Hugh, Montgomery, Geraint, Rees, Chris, Laing, Clifton R, Baker, Thomas F, Osborne, Ruth, Reeves, Demis, Hassabis, Dominic, King, Mustafa, Suleyman, Trevor, Back, Christopher, Nielson, Martin G, Seneviratne, Joseph R, Ledsam, Shakir, Mohamed
Publikováno v:
Nature protocols. 16(6)
Early prediction of patient outcomes is important for targeting preventive care. This protocol describes a practical workflow for developing deep-learning risk models that can predict various clinical and operational outcomes from structured electron
Autor:
Ivan Protsyuk, Xavier Glorot, Christopher Nielson, Alistair Connell, Cian Hughes, Shakir Mohamed, Chris Laing, Julien Cornebise, Andre Saraiva, Ruth M. Reeves, Demis Hassabis, Alan Karthikesalingam, Hugh Montgomery, Jack W. Rae, Clemens Meyer, Dominic King, Mustafa Suleyman, Suman V. Ravuri, Michal Zielinski, Anne Mottram, Harry Askham, Geraint Rees, Joseph R. Ledsam, Clifton R. Baker, Nenad Tomasev, Kelly S. Peterson, Trevor Back
Early detection of patient deterioration is key to unlocking the potential for targeted preventative care and improving patient outcomes. This protocol describes a workflow for developing deep learning continuous risk models for early prediction of f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ca81db07e34dd4c756362e089da89768
https://doi.org/10.21203/rs.2.10083/v1
https://doi.org/10.21203/rs.2.10083/v1
Autor:
Edward D. Siew, Thomas M. Maddox, Thomas T. Tsai, Todd A. MacKenzie, John S. Rumsfeld, Jeremiah R. Brown, Mary E. Plomondon, Christopher Nielson, Clifton R. Baker, Michael E. Matheny, Frederic S. Resnic, James Fly
Publikováno v:
Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease, Vol 4, Iss 12, Pp n/a-n/a (2015)
Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease
Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease
Background Acute kidney injury ( AKI ) occurs frequently after cardiac catheterization and percutaneous coronary intervention. Although a clinical risk model exists for percutaneous coronary intervention, no models exist for both procedures, nor do e