Zobrazeno 1 - 10
of 109
pro vyhledávání: '"Clenshaw algorithm"'
Autor:
P. Lovetskiy Konstantin, A. Tiutiunnik Anastasiia, Felix Jose do Nascimento Vicente, Celmilton Teixeira Boa Morte
Publikováno v:
Discrete and Continuous Models and Applied Computational Science, Vol 32, Iss 2, Pp 202-212 (2024)
The article describes a method for calculating interpolation coefficients of expansion using Chebyshev polynomials. The method is valid when the desired function is bounded and has a finite number of maxima and minima in a finite domain of interpolat
Externí odkaz:
https://doaj.org/article/f3a8ffce44a24cc19ba3ad665edaf82e
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Behnam Hashemi
Publikováno v:
ACM Transactions on Mathematical Software. 45:1-33
We consider the problem of computing rigorous enclosures for polynomials represented in the Chebyshev basis. Our aim is to compare and develop algorithms with a linear complexity in terms of the polynomial degree. A first category of methods relies o
Autor:
Navid Razmjooy, Mehdi Ramezani
Publikováno v:
Iranian Journal of Science and Technology, Transactions A: Science. 41:1017-1026
Second kind Chebyshev polynomials are modified set of defined Chebyshev polynomials by a slightly different generating function. This paper presents new and efficient algorithm for achieving an analytical approximate solution to optimal control probl
Publikováno v:
Journal of Information and Optimization Sciences. 38:455-469
In this paper, we introduce a modified algorithm for the Clenshaw-Curtis (CC) quadrature formula. The coefficients of the formula are approximated by using a finite linear combination of Legendre polynomials in the Least Squares sense to make the CC
Autor:
Hassan Majidian
Publikováno v:
Applied Numerical Mathematics. 113:44-53
It is well known that the coefficients of the Chebyshev expansion of a function f ź C - 1 , 1 decay at a rate depending on the smoothness of f. New decay rates for the Chebyshev coefficients as well as their partial sums are obtained which are sharp
Autor:
Viviane Ledoux, Guillaume Moroz
Publikováno v:
Mathematical Aspects of Computer and Information Sciences 2019
Mathematical Aspects of Computer and Information Sciences 2019, Nov 2019, Gebze, Turkey
Mathematical Aspects of Computer and Information Sciences ISBN: 9783030431198
MACIS
Mathematical Aspects of Computer and Information Sciences 2019, Nov 2019, Gebze, Turkey
Mathematical Aspects of Computer and Information Sciences ISBN: 9783030431198
MACIS
International audience; In approximation theory, it is standard to approximate functions by polynomials expressed in the Chebyshev basis. Evaluating a polynomial $f$ of degree n given in the Chebyshev basis can be done in $O(n)$ arithmetic operations
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0f5a60053dd95c396fca54de28d6b68b
http://arxiv.org/abs/1912.05843
http://arxiv.org/abs/1912.05843
Autor:
Kuan Xu
Publikováno v:
Applied Numerical Mathematics. 102:17-30
In the last thirty years, the Chebyshev points of the first kind have not been given as much attention for numerical applications as the second-kind ones. This survey summarizes theorems and algorithms for first-kind Chebyshev points with references
Publikováno v:
Journal of Computational Physics. 306:55-72
In this paper, we develop an error embedded method based on generalized Chebyshev polynomials for solving stiff initial value problems. The solution and the error at each integration step are calculated by generalized Chebyshev polynomials of two con
Publikováno v:
IET Microwaves, Antennas & Propagation. 10:245-250
Pade–Chebyshev approximation of Clenshaw–Lord type with method of moments is proposed for wide-band analysis of an arbitrary-shaped perfect electric conductor structure. Moreover, various Chebyshev polynomials, such as first, third, and fourth ki