Zobrazeno 1 - 10
of 50
pro vyhledávání: '"Clemente Rodrigo"'
Publikováno v:
Advances in Nonlinear Analysis, Vol 12, Iss 1, Pp 277-283 (2023)
We study general problems modeling electrostatic microelectromechanical systems devices (Pλ )φ(r,−u′(r))=λ∫0rf(s)g(u(s))ds,r∈(0,1),00\lambda \gt 0 is a parameter. We obtain results on the existence and regularity of a touchdown solution t
Externí odkaz:
https://doaj.org/article/bdd43cb993a84328b5dc601225fea18f
Autor:
do Ó João Marcos, Clemente Rodrigo
Publikováno v:
Advanced Nonlinear Studies, Vol 18, Iss 1, Pp 41-53 (2018)
In this paper we analyze the Lane–Emden system
Externí odkaz:
https://doaj.org/article/78a98b2cd1ec420e82de46484bf659e9
This paper investigates the existence, nonexistence, and qualitative properties of p-harmonic functions in the upper half-space $\mathbb{R}^N_+ \, (N \geq 3)$ satisfying nonlinear boundary conditions for $1
Externí odkaz:
http://arxiv.org/abs/2307.12124
We study general equations modeling electrostatic MEMS devices \begin{equation} \begin{cases} \label{P} \varphi\big(r,- u'(r)\big)=\lambda\int_0^r\frac{f(s)}{g(u(s))}\,\mathrm{d}s, & r\in(0,1), \\ 0 < u(r) < 1, & r\in(0,1), \\ u(1) = 0, \tag{$P_\lamb
Externí odkaz:
http://arxiv.org/abs/2210.16911
In this paper we study the following class of fractional Choquard--type equations \[ (-\Delta)^{1/2}u + u=\Big( I_\mu \ast F(u)\Big)f(u), \quad x\in\mathbb{R}, \] where $(-\Delta)^{1/2}$ denotes the $1/2$--Laplacian operator, $I_{\mu}$ is the Riesz p
Externí odkaz:
http://arxiv.org/abs/2007.00773
Autor:
Ó, João Marcos do, Clemente, Rodrigo
We are interested in regularity properties of semi-stable solutions for a class of singular semilinear elliptic problems with advection term defined on a smooth bounded domain of a complete Riemannian manifold with zero Dirichlet boundary condition.
Externí odkaz:
http://arxiv.org/abs/1901.02734
Autor:
Ó, João Marcos do, Clemente, Rodrigo
In this paper we analyse the Lane-Emden system \begin{equation} \left\{ \begin{alignedat}{3} -\Delta u = & \, \frac{\lambda f(x)}{(1-v)^2} & \quad \text{in} & \quad\Omega\\ -\Delta v = & \, \frac{\mu g(x)}{(1-u)^2} & \quad \text{in} & \quad\Omega\\ 0
Externí odkaz:
http://arxiv.org/abs/1901.02728
Autor:
Ó, João Marcos do, Clemente, Rodrigo
We investigate the regularity of semi-stable, radially symmetric, and decreasing solutions for a class of quasilinear reaction-diffusion equations in the inhomogeneous context of Riemannian manifolds. We prove uniform boundedness, Lebesgue and Sobole
Externí odkaz:
http://arxiv.org/abs/1901.02409
Autor:
de Carvalho, Gilson M.1 (AUTHOR), Clemente, Rodrigo G.1 (AUTHOR) rodrigo.clemente@ufrpe.br, de Albuquerque, José Carlos2 (AUTHOR)
Publikováno v:
Mathematische Nachrichten. Sep2023, Vol. 296 Issue 9, p4357-4373. 17p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.