Zobrazeno 1 - 10
of 537
pro vyhledávání: '"Clement DE"'
Publikováno v:
Aquaculture Reports, Vol 36, Iss , Pp 102084- (2024)
A 10-week feeding trial was conducted to elucidate the effects of coated amino acids on growth performance, intestinal health, and muscle quality of gibel carp (Carassius auratus gibelio) fed with low protein diet. A total of 450 carps (initial body
Externí odkaz:
https://doaj.org/article/952e70018c4a40fdb3fbb2214fdc59be
Autor:
Pazzis, Clément de Seguins
Let F be a field. We investigate the greatest possible dimension t_n(F) for a vector space of n-by-n matrices with entries in F and in which every element is triangularizable over the ground field F. It is obvious that t_n(F) is greater than or equal
Externí odkaz:
http://arxiv.org/abs/2410.07942
Autor:
Isabelle Durand-Zaleski, Lionel Perrier, Lise Rochaix, Evangeline Pillebout, Louis Farge, Clement de Chaisemartin, J C K Dupont, Luc Behaghel
Publikováno v:
BMJ Open, Vol 12, Iss 12 (2022)
Introduction End-stage renal disease (ESRD) affects 84 000 persons in France and costs an estimated €4.2 billion. Education about their disease empowers patients and allows improved management of their disease and better health outcomes. This study
Externí odkaz:
https://doaj.org/article/af47f4748caf4579a333ed5f4cf5b321
Autor:
Pazzis, Clément de Seguins
We use a double-duality argument to give a new proof of Dieudonn\'e's theorem on spaces of singular matrices. The argument connects the situation to the structure of spaces of operators with rank at most $1$, and works best over algebraically closed
Externí odkaz:
http://arxiv.org/abs/2409.19631
Autor:
Pazzis, Clément de Seguins
Let $\mathbb{F}$ be a field, and $n \geq p \geq r>0$ be integers. In a recent article, Rubei has determined, when $\mathbb{F}$ is the field of real numbers, the greatest possible dimension for an affine subspace of $n$--by--$p$ matrices with entries
Externí odkaz:
http://arxiv.org/abs/2405.02689
Autor:
Pazzis, Clément de Seguins
Let $s$ be an $n$-dimensional symplectic form over a field $\mathbb{F}$ of characteristic other than $2$, with $n>2$. In a previous article, we have proved that if $\mathbb{F}$ is infinite then every element of the symplectic group $\mathrm{Sp}(s)$ i
Externí odkaz:
http://arxiv.org/abs/2405.02663
Autor:
Hamza Mehdaoui, Hamid Ait Abderrahmane, Clement de Loubens, Faïçal Nait Bouda, Sofiane Hamani
Publikováno v:
Gels, Vol 7, Iss 4, p 215 (2021)
This paper discusses the spreading of gel-based ophthalmic formulation on the cornea surface assumed to be flat. We show that gel-based formulations exhibit rheological behaviors that the Herschel–Bulkley model can describe. The continuity and mome
Externí odkaz:
https://doaj.org/article/a5222e81f7c14014ad8376c7cea37509
Autor:
Pazzis, Clément de Seguins
Let $s$ be an $n$-dimensional symplectic form over an arbitrary field with characteristic not $2$, with $n>2$. The simplicity of the group $\mathrm{Sp}(s)/\{\pm \mathrm{id}\}$ and the existence of a non-trivial involution in $\mathrm{Sp}(s)$ yield th
Externí odkaz:
http://arxiv.org/abs/2309.01785
Autor:
Pazzis, Clément de Seguins
Let $\mathbb{F}$ be a field, and $n \geq r>0$ be integers, with $r$ even. Denote by $\mathrm{A}_n(\mathbb{F})$ the space of all $n$-by-$n$ alternating matrices with entries in $\mathbb{F}$. We consider the problem of determining the greatest possible
Externí odkaz:
http://arxiv.org/abs/2307.10347
Autor:
Pazzis, Clément de Seguins
An automorphism $u$ of a vector space is called unipotent of index $2$ whenever $(u-\mathrm{id})^2=0$. Let $b$ be a non-degenerate symmetric or skewsymmetric bilinear form on a vector space $V$ over a field $\mathbb{F}$ of characteristic different fr
Externí odkaz:
http://arxiv.org/abs/2306.05821