Zobrazeno 1 - 10
of 540
pro vyhledávání: '"Clark, Jeffrey P."'
Autor:
Clark, Jeffrey N., Wragg, Matthew, Nielsen, Emily, Perello-Nieto, Miquel, Keshtmand, Nawid, Ambler, Michael, Sharma, Shiv, Bourdeaux, Christopher P., Brigden, Amberly, Santos-Rodriguez, Raul
There is a growing need to understand how digital systems can support clinical decision-making, particularly as artificial intelligence (AI) models become increasingly complex and less human-interpretable. This complexity raises concerns about trustw
Externí odkaz:
http://arxiv.org/abs/2411.11774
Quantifying a patient's health status provides clinicians with insight into patient risk, and the ability to better triage and manage resources. Early Warning Scores (EWS) are widely deployed to measure overall health status, and risk of adverse outc
Externí odkaz:
http://arxiv.org/abs/2407.09373
Autor:
Wan, Michelle W. L., Clark, Jeffrey N., Small, Edward A., Mayoral, Elena Fillola, Santos-Rodríguez, Raúl
Sustainable global development is one of the most prevalent challenges facing the world today, hinging on the equilibrium between socioeconomic growth and environmental sustainability. We propose approaches to monitor and quantify sustainable develop
Externí odkaz:
http://arxiv.org/abs/2312.04416
Autor:
Clark, Jeffrey N., Small, Edward A., Keshtmand, Nawid, Wan, Michelle W. L., Mayoral, Elena Fillola, Werner, Enrico, Bourdeaux, Christopher P., Santos-Rodriguez, Raul
Counterfactual explanations, and their associated algorithmic recourse, are typically leveraged to understand, explain, and potentially alter a prediction coming from a black-box classifier. In this paper, we propose to extend the use of counterfactu
Externí odkaz:
http://arxiv.org/abs/2309.15965
Autor:
Small, Edward A., Clark, Jeffrey N., McWilliams, Christopher J., Sokol, Kacper, Chan, Jeffrey, Salim, Flora D., Santos-Rodriguez, Raul
Counterfactuals operationalised through algorithmic recourse have become a powerful tool to make artificial intelligence systems explainable. Conceptually, given an individual classified as y -- the factual -- we seek actions such that their predicti
Externí odkaz:
http://arxiv.org/abs/2309.04211
Autor:
Werner, Enrico, Clark, Jeffrey N., Bhamber, Ranjeet S., Ambler, Michael, Bourdeaux, Christopher P., Hepburn, Alexander, McWilliams, Christopher J., Santos-Rodriguez, Raul
We present a pipeline in which unsupervised machine learning techniques are used to automatically identify subtypes of hospital patients admitted between 2017 and 2021 in a large UK teaching hospital. With the use of state-of-the-art explainability t
Externí odkaz:
http://arxiv.org/abs/2301.08019
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.