Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Clara Arbizu-Barrena"'
Autor:
David Pozo-Vázquez, Inés Galván-León, Ricardo Aler-Mur, Javier Huertas-Tato, Francisco J. Rodríguez-Benítez, Clara Arbizu-Barrena
Publikováno v:
e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid
instname
instname
The ability of four models to provide short-term (up to 6 h ahead) GHI and DNI forecasts in the Iberian Peninsula is assessed based on two years of data collected at four stations. The models follow (mostly) independent approaches: one pure statistic
Autor:
Francisco J. Rodríguez-Benítez, Inés M. Galván, Javier Huertas-Tato, David Pozo-Vázquez, Clara Arbizu-Barrena, Ricardo Aler
Publikováno v:
e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid
instname
instname
In this article we explore the blending of the four models (Satellite, WRF-Solar, Smart Persistence and CIADCast) studied in Part 1 by means of Support Vector Machines with the aim of improving GHI and DNI forecasts. Two blending approaches that use
Autor:
Clara Arbizu-Barrena, J. Tovar-Pescador, David Pozo-Vázquez, Francisco J. Rodríguez-Benítez, F. J. Santos-Alamillos
Publikováno v:
Solar Energy. 171:374-387
The intra-day modes of variability of the solar resources in the Iberian Peninsula, their associated weather patterns and their impact on the solar power output are assessed in this work. The analysis is performed for yearly and seasonal variability.
Autor:
Ricardo Aler, Inés M. Galván, Francisco J. Rodríguez-Benítez, David Pozo-Vázquez, Clara Arbizu-Barrena, Javier Huertas-Tato
Publikováno v:
e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid
instname
instname
Recent research has shown that the integration or blending of different forecasting models is able to improve the predictions of solar radiation. However, most works perform model blending to improve point forecasts, but the integration of forecastin
Autor:
María M. Fernández-León, Francisco J. Rodríguez-Benítez, Miguel López-Cuesta, David Pozo-Vázquez, Francisco J. Santos-Alamillos, Clara Arbizu-Barrena, J. Tovar-Pescador, Miguel Á. Pamos-Ureña
Publikováno v:
Applied Energy. 292:116838
This work proposes and evaluates methods for extending the forecasting horizon of all-sky imager (ASI)-based solar radiation nowcasts and estimating the uncertainty of these predictions. In addition, we evaluated procedures for improving the temporal
Autor:
David Pozo-Vázquez, Clara Arbizu-Barrena, J. Tovar-Pescador, José A. Ruiz-Arias, Francisco J. Rodríguez-Benítez
Publikováno v:
Solar Energy. 155:1092-1103
A new method for short-term solar radiation forecasting (referred to as Cloud Index Advection and Diffusion, CIADCast) is proposed and validated. The method is based on the advection and diffusion of Meteosat Second Generation (MSG) cloud index estim
Autor:
J. Tovar-Pescador, David Pozo-Vázquez, José A. Ruiz-Arias, Clara Arbizu-Barrena, F. J. Santos-Alamillos
Publikováno v:
Monthly Weather Review. 144:703-711
Solar radiation plays a key role in the atmospheric system but its distribution throughout the atmosphere and at the surface is still very uncertain in atmospheric models, and further assessment is required. In this study, the shortwave downward tota
Autor:
Juan Luis Guerrero-Rascado, Juan Antonio Bravo-Aranda, Lucas Alados-Arboledas, Francisco Olmo, Marc Mallet, Francisco Navas-Guzmán, María José Granados-Muñoz, Gregori de-Arruda-Moreira, David Pozo-Vázquez, Clara Arbizu-Barrena
20 The automatic and non-supervised detection of the planetary boundary layer height (zPBL) by means of lidar measurements was widely investigated during the last years. Despite the considerable advances achieved the experimental detection still pres
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9429a3fbe4a9590a72ad9e58e9f648e2
https://doi.org/10.5194/acp-2016-718
https://doi.org/10.5194/acp-2016-718
Autor:
David Pozo-Vázquez, Clara Arbizu-Barrena, Francisco J. Rodríguez-Benítez, I. Galvan-Leon, R. Aler-Mur, Javier Huertas-Tato
Publikováno v:
Journal of Geophysical Research: Atmospheres. 122:11-11,061
A methodology, aimed to be fully operational, for automatic cloud classification based on the synergetic use of a sky camera and a ceilometer is presented. The Random Forest Machine Learning algorithm was used to train the classifier with 19 input fe
Publikováno v:
Journal of Geophysical Research: Atmospheres. 120
The ability of six microphysical parameterizations included in the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model to represent various macroscopic cloud characteristics at multiple spatial and temporal resolutions is