Zobrazeno 1 - 10
of 78
pro vyhledávání: '"Claire Amiot"'
Autor:
Keller, Bernhard
Publikováno v:
In Comptes rendus - Mathématique October 2018 356(10):984-986
Autor:
Bernhard Keller
Publikováno v:
Comptes Rendus Mathematique. 356:984-986
Claire Amiot has classified the connected triangulated k-categories with finitely many isoclasses of indecomposables satisfying suitable hypotheses. We remark that her proof shows that these triangulated categories are determined by their underlying
Publikováno v:
Communications in Algebra. 49:114-150
For algebras of global dimension 2 arising from a cut of the quiver with potential associated with a triangulation of an unpunctured surface, Amiot-Grimeland defined integer-valued functions on the...
Autor:
Claire Amiot
Publikováno v:
Winter Braids Lecture Notes. 5:1-14
Autor:
Claire Amiot, Thomas Brüstle
Skew-gentle algebras are skew-group algebras of gentle algebras equipped with a certain $\Z_2$-action. Building on the bijective correspondence between gentle algebras and dissected surfaces, we obtain in this paper a bijection between skew-gentle al
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4ea092180d9e157f50f98e942ad8568d
Publikováno v:
American Journal of Mathematics. 137:813-857
By Auslander's algebraic McKay correspondence, the stable category of Cohen-Macaulay modules over a simple singularity is triangle equivalent to the $1$-cluster category of the path algebra of a Dynkin quiver (i.e., the orbit category of the derived
Autor:
Steffen Oppermann, Claire Amiot
Publikováno v:
Nagoya Mathematical Journal. 211:1-50
In this paper, we study algebras of global dimension at most 2 whose generalized cluster category is equivalent to the cluster category of an acyclic quiver which is either a tree or of type Ã. We are particularly interested in their derived equival
Autor:
Claire Amiot
Publikováno v:
Algebras and Representation Theory
Algebras and Representation Theory, Springer Verlag, 2016, 19 (5), pp.1059-1080. ⟨10.1007/s10468-016-9611-x⟩
Algebras and Representation Theory, Springer Verlag, 2016, 19 (5), pp.1059-1080. ⟨10.1007/s10468-016-9611-x⟩
In this paper we refine the main result of a previous paper of the author with Grimeland on derived invariants of surface algebras. We restrict to the case where the surface is a torus with one boundary component and give an easily computable derived
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b7292d89a73a54b1e2ca068745f826cf
https://hal.archives-ouvertes.fr/hal-01620150
https://hal.archives-ouvertes.fr/hal-01620150
Autor:
Yvonne Grimeland, Claire Amiot
Publikováno v:
Journal of Pure and Applied Algebra
Journal of Pure and Applied Algebra, Elsevier, 2016, 220 (9), pp.3133-3155. ⟨10.1016/j.jpaa.2016.02.008⟩
Journal of Pure and Applied Algebra, Elsevier, 2016, 220 (9), pp.3133-3155. ⟨10.1016/j.jpaa.2016.02.008⟩
In this paper we study the derived equivalences between surface algebras, introduced by David-Roesler and Schiffler. Each surface algebra arises from a cut of an ideal triangulation of an unpunctured marked Riemann surface with boundary. A cut can be
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d786c2ae1cb86886a9f57b99c523d9e3
https://hal.archives-ouvertes.fr/hal-01620155
https://hal.archives-ouvertes.fr/hal-01620155
Autor:
Claire Amiot
Publikováno v:
Annales de l’institut Fourier. 59:2525-2590
Let $k$ be a field and $A$ a finite-dimensional $k$-algebra of global dimension $\leq 2$. We construct a triangulated category $\Cc_A$ associated to $A$ which, if $A$ is hereditary, is triangle equivalent to the cluster category of $A$. When $\Cc_A$