Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Claes N. Ladefoged"'
Deep learning for Dixon MRI-based attenuation correction in PET/MRI of head and neck cancer patients
Autor:
Anders B. Olin, Adam E. Hansen, Jacob H. Rasmussen, Björn Jakoby, Anne K. Berthelsen, Claes N. Ladefoged, Andreas Kjær, Barbara M. Fischer, Flemming L. Andersen
Publikováno v:
EJNMMI Physics, Vol 9, Iss 1, Pp 1-13 (2022)
Abstract Background Quantitative whole-body PET/MRI relies on accurate patient-specific MRI-based attenuation correction (AC) of PET, which is a non-trivial challenge, especially for the anatomically complex head and neck region. We used a deep learn
Externí odkaz:
https://doaj.org/article/eb86041cd80847dc8a904949c03c03c1
Autor:
Anders B. Olin, MSc, PhD, Christopher Thomas, MPhys, MSc, Adam E. Hansen, MSc, PhD, Jacob H. Rasmussen, MD, PhD, Georgios Krokos, MSc, PhD, Teresa Guerrero Urbano, PhD, FRCR, MRCPI, LMS, Andriana Michaelidou, MBBS, MSc, FRCR, MD, Björn Jakoby, MSc, PhD, Claes N. Ladefoged, MSc, PhD, Anne K. Berthelsen, MD, Katrin Håkansson, MSc, PhD, Ivan R. Vogelius, MSc, PhD, DMSc, Lena Specht, MD, PhD, DMSc, Sally F. Barrington, MBBS, MSc, FRCP, FRCR, MD, Flemming L. Andersen, MSc, PhD, Barbara M. Fischer, MD, PhD, DMSc
Publikováno v:
Advances in Radiation Oncology, Vol 6, Iss 6, Pp 100762- (2021)
Purpose: Radiotherapy planning based only on positron emission tomography/magnetic resonance imaging (PET/MRI) lacks computed tomography (CT) information required for dose calculations. In this study, a previously developed deep learning model for cr
Externí odkaz:
https://doaj.org/article/9150efecbfb245fc843b7348e9d49ade
Autor:
Confidence Raymond, Michael T. Jurkiewicz, Akintunde Orunmuyi, Linshan Liu, Michael Oluwaseun Dada, Claes N. Ladefoged, Jarmo Teuho, Udunna C. Anazodo
Publikováno v:
Journal of Neuroradiology. 50:315-326
Publikováno v:
Frontiers in Neuroscience, Vol 11 (2017)
Aim: Positron emission tomography (PET) imaging is a useful tool for assisting in correct differentiation of tumor progression from reactive changes, and the radiolabeled amino acid analog tracer O-(2-18F-fluoroethyl)-L-tyrosine (FET)-PET is amongst
Externí odkaz:
https://doaj.org/article/137f01e7fb454f04b53011b10857d070
Autor:
Mathias Loft, Claes N. Ladefoged, Camilla B. Johnbeck, Esben A. Carlsen, Peter Oturai, Seppo W. Langer, Ulrich Knigge, Flemming L. Andersen, Andreas Kjaer
Publikováno v:
Journal of Nuclear Medicine. :264826
Autor:
Oscar Acosta, Simon Arridge, Anais Barateau, Riccardo Barbano, Julien Bert, Ninon Burgos, Hu Chen, Kevin T. Chen, Xiaoran Chen, Li Cheng, Jae Hyuk Choi, Hilda Chourak, Walter J. Curran, Renaud de Crevoisier, Srijay Deshpande, Blake E. Dewey, Jason Dowling, Ivana Drobnjak, Jan Ehrhardt, Dennis Eschweiler, Alejandro F. Frangi, Mark Graham, Peter Greer, Shuo Han, Yufan He, Juan Eugenio Iglesias, Mark Jenkinson, Bangti Jin, Wenchi Ke, Charles Kervrann, Ender Konukoglu, Violeta Kovacheva, Claes N. Ladefoged, Ina Laube, Yang Lei, Andrea Leo, Bowen Li, Huiqi Li, Tian Liu, Yihao Liu, Matteo Mancini, Fayyaz Minhas, Tereza Nečasová, Dong Nie, Jean-Claude Nunes, Laura O'Connor, Ilkay Oksuz, Anders B. Olin, Jerry L. Prince, Richard L.J. Qiu, Nasir Rajpoot, Parnesh Raniga, Nishant Ravikumar, Samuel W. Remedios, Pekka Ruusuvuori, David Sarrut, Johannes Stegmaier, David Svoboda, Ryutaro Tanno, Sotirios A. Tsaftaris, Vladimír Ulman, Gabriele Valvano, Tonghe Wang, Xuyun Wen, David Wiesner, Matthias Wilms, Yan Xia, Xiaofeng Yang, Greg Zaharchuk, Hui Zhang, Yi Zhang, Can Zhao, He Zhao, Lianrui Zuo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b44b27cc340c3c75307c529f2c431a63
https://doi.org/10.1016/b978-0-12-824349-7.00006-2
https://doi.org/10.1016/b978-0-12-824349-7.00006-2
Deep learning for Dixon MRI-based attenuation correction in PET/MRI of head and neck cancer patients
Autor:
Anders B. Olin, Adam E. Hansen, Jacob H. Rasmussen, Björn Jakoby, Anne K. Berthelsen, Claes N. Ladefoged, Andreas Kjær, Barbara M. Fischer, Flemming L. Andersen
Publikováno v:
Olin, A B, Hansen, A E, Rasmussen, J H, Jakoby, B, Berthelsen, A K, Ladefoged, C N, Kjær, A, Fischer, B M & Andersen, F L 2022, ' Deep learning for Dixon MRI-based attenuation correction in PET/MRI of head and neck cancer patients ', EJNMMI Physics, vol. 9, no. 1, 20 . https://doi.org/10.1186/s40658-022-00449-z
Background Quantitative whole-body PET/MRI relies on accurate patient-specific MRI-based attenuation correction (AC) of PET, which is a non-trivial challenge, especially for the anatomically complex head and neck region. We used a deep learning model
Autor:
Oriol, Puig, Otto M, Henriksen, Flemming L, Andersen, Ulrich, Lindberg, Liselotte, Højgaard, Ian, Law, Claes N, Ladefoged
Publikováno v:
Journal of Cerebral Blood Flow & Metabolism
Quantitative [15O]H2O positron emission tomography (PET) is the accepted reference method for regional cerebral blood flow (rCBF) quantification. To perform reliable quantitative [15O]H2O-PET studies in PET/MRI scanners, MRI-based attenuation-correct
Autor:
Oriol, Puig, Otto M, Henriksen, Mark B, Vestergaard, Adam E, Hansen, Flemming L, Andersen, Claes N, Ladefoged, Egill, Rostrup, Henrik Bw, Larsson, Ulrich, Lindberg, Ian, Law
Publikováno v:
Journal of Cerebral Blood Flow & Metabolism
Arterial spin labelling (ASL) is a non-invasive magnetic resonance imaging (MRI) technique that may provide fully quantitative regional cerebral blood flow (rCBF) images. However, before its application in clinical routine, ASL needs to be validated