Zobrazeno 1 - 10
of 109
pro vyhledávání: '"Cladek AT"'
Autor:
Qimin Liu, Emma Ning, Mindy K Ross, Andrea Cladek, Sarah Kabir, Amruta Barve, Ellyn Kennelly, Faraz Hussain, Jennifer Duffecy, Scott A Langenecker, Theresa M Nguyen, Theja Tulabandhula, John Zulueta, Alexander P Demos, Alex Leow, Olusola Ajilore
Publikováno v:
Journal of Medical Internet Research, Vol 26, p e51269 (2024)
BackgroundPassive sensing through smartphone keyboard data can be used to identify and monitor symptoms of mood disorders with low participant burden. Behavioral phenotyping based on mobile keystroke data can aid in clinical decision-making and provi
Externí odkaz:
https://doaj.org/article/287dc102f9164e39940377771182a530
Autor:
Damilola O. Akamo, Bernadette Cladek, Monojoy Goswami, Kyle R. Gluesenkamp, Orlando Rios, David J. Keffer
Publikováno v:
ACS Omega, Vol 9, Iss 16, Pp 18051-18061 (2024)
Externí odkaz:
https://doaj.org/article/542a615f10ae4d4fbba8bfb247445281
Autor:
Cladek, Laura, Tao, Terence
We obtain new bounds on the additive energy of (Ahlfors-David type) regular measures in both one and higher dimensions, which implies expansion results for sums and products of the associated regular sets, as well as more general nonlinear functions
Externí odkaz:
http://arxiv.org/abs/2012.02747
The Favard length of a subset of the plane is defined as the average of its orthogonal projections. This quantity is related to the probabilistic Buffon needle problem; that is, the Favard length of a set is proportional to the probability that a nee
Externí odkaz:
http://arxiv.org/abs/2003.03620
We study a two-dimensional discrete directional maximal operator along the set of the prime numbers. We show existence of a set of vectors, which are lattice points in a sufficiently large annulus, for which the $\ell^2$ norm of the associated maxima
Externí odkaz:
http://arxiv.org/abs/1909.13319
Autor:
Cladek, Laura, Krause, Ben
Let $V = \{ v_1,\dots,v_N\}$ be a collection of $N$ vectors that live near a discrete sphere. We consider discrete directional maximal functions on $\mathbb{Z}^2$ where the set of directions lies in $V$, given by \[ \sup_{v \in V, k \geq C \log N} \l
Externí odkaz:
http://arxiv.org/abs/1901.06070
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
J. Anal. Math. 145 (2021), no. 1, 1--28
Consider the surface measure $\mu$ on a sphere in a nonvertical hyperplane on the Heisenberg group $\mathbb{H}^n$, $n\ge 2$, and the convolution $f*\mu$. Form the associated maximal function $Mf=\sup_{t>0}|f*\mu_t|$ generated by the automorphic dilat
Externí odkaz:
http://arxiv.org/abs/1801.06981
Autor:
Cladek, Bernadette R., Ramirez-Cuesta, A.J., Everett, S. Michelle, McDonnell, Marshall T., Daemen, Luke, Cheng, Yongqiang, Brant Carvalho, Paulo H.B., Tulk, Christopher, Tucker, Matthew G., Keffer, David J., Rawn, Claudia J.
Publikováno v:
In Fuel 1 November 2022 327
Autor:
Beltran, David, Cladek, Laura
We prove sparse bounds for pseudodifferential operators associated to H\"ormander symbol classes. Our sparse bounds are sharp up to the endpoint and rely on a single scale analysis. As a consequence, we deduce a range of weighted estimates for pseudo
Externí odkaz:
http://arxiv.org/abs/1711.02339