Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Cirstea, Florica C."'
Autor:
Cîrstea, Florica C., Fărcăşeanu, Maria
Publikováno v:
Journal of Differential Equations 292 (2021) 461-500
For $N\geq 3$, by the seminal paper of Brezis and V\'eron (Arch. Rational Mech. Anal. 75(1):1--6, 1980/81), no positive solutions of $-\Delta u+u^q=0$ in $\mathbb R^N\setminus \{0\}$ exist if $q\geq N/(N-2)$; for $1
Externí odkaz:
http://arxiv.org/abs/2009.00157
We prove the existence of a solution to a singular anisotropic elliptic equation in a bounded open subset $\Omega$ of $\mathbb R^N$ with $N\ge 2$, subject to a homogeneous boundary condition: \begin{equation} \label{eq0} \left\{ \begin{array}{ll} \ma
Externí odkaz:
http://arxiv.org/abs/2001.02887
We prove the existence of a weak solution for a general class of Dirichlet anisotropic elliptic problems such as $\mathcal Au+\Phi(x,u,\nabla u)=\mathfrak{B}u+f$ in $\Omega$, where $\Omega$ is a bounded open subset of $\mathbb R^N$ and $f\in L^1(\Ome
Externí odkaz:
http://arxiv.org/abs/2001.02754
Autor:
Cîrstea, Florica C.
Publikováno v:
Bull.Aust.Math.Soc 103 (2021), no. 2, 326-332
Urysohn's Lemma is a crucial property of normal spaces that deals with separation of closed sets by continuous functions. It is also a fundamental ingredient in proving the Tietze Extension Theorem, another property of normal spaces that deals with t
Externí odkaz:
http://arxiv.org/abs/1910.10381
Autor:
Ching, Joshua, Cirstea, Florica C.
Publikováno v:
Proc.Roy.Soc.Edinburgh A 150 (2020), no. 3, 1361-1376
In this paper, we obtain gradient estimates of the positive solutions to weighted $p$-Laplacian type equations with a gradient-dependent nonlinearity of the form \begin{equation} \label{one} {\rm div} (|x|^{\sigma}|\nabla u|^{p-2} \nabla u)= |x|^{-\t
Externí odkaz:
http://arxiv.org/abs/1802.00109
Publikováno v:
Math.Ann. 375 (2019) no. 3-4, 1193-1230
The first two authors [Proc. Lond. Math. Soc. (3) {\bf 114}(1):1--34, 2017] classified the behaviour near zero for all positive solutions of the perturbed elliptic equation with a critical Hardy--Sobolev growth $$-\Delta u=|x|^{-s} u^{2^\star(s)-1} -
Externí odkaz:
http://arxiv.org/abs/1801.00367
Autor:
Cîrstea, Florica C., Fărcăşeanu, Maria
Publikováno v:
In Journal of Differential Equations 15 August 2021 292:461-500
Autor:
Cîrstea, Florica C., Robert, Frédéric
Given $B_1(0)$ the unit ball of $\mathbb{R}^n$ ($n\geq 3$), we study smooth positive singular solutions $u\in C^2(B_1(0)\setminus \{0\})$ to $-\Delta u=\frac{u^{2^\star(s)-1}}{|x|^s}-\mu u^q$. Here $0< s<2$, $2^\star(s):=2(n-s)/(n-2)$ is critical for
Externí odkaz:
http://arxiv.org/abs/1601.05382
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.