Zobrazeno 1 - 10
of 101
pro vyhledávání: '"Cirici, Joana"'
Autor:
Cirici, Joana, Horel, Geoffroy
In this note, we explain an operadic proof of the BTT Theorem stating that the deformation theory of Calabi-Yau varieties is unobstructed. We also provide a short new proof of the non-commutative BTT for Calabi-Yau dg-categories. Finally, we observe
Externí odkaz:
http://arxiv.org/abs/2410.08786
Autor:
Cirici, Joana, Wilson, Scott O.
We show that the de Rham complex of any almost Hermitian manifold carries a natural commutative $BV_\infty$-algebra structure satisfying the degeneration property. In the almost K\"ahler case, this recovers Koszul's BV-algebra, defined for any Poisso
Externí odkaz:
http://arxiv.org/abs/2403.12314
Autor:
Cirici, Joana, Saleh, Bashar
We obtain restrictions on the rational homotopy types of mapping spaces and of classifying spaces of homotopy automorphisms by means of the theory of positive weight decompositions. The theory applies, in particular, to connected components of holomo
Externí odkaz:
http://arxiv.org/abs/2308.12821
Autor:
Cirici, Joana, Horel, Geoffroy
Any Batalin-Vilkovisky algebra with a homotopy trivialization of the BV-operator gives rise to a hypercommutative algebra structure at the cochain level which, in general, contains more homotopical information than the hypercommutative algebra introd
Externí odkaz:
http://arxiv.org/abs/2302.08492
Autor:
Cirici, Joana, Wilson, Scott O.
Publikováno v:
Expositiones Mathematicae, Volume 40, Issue 4, Pages 1244-1260, 2022
We introduce and study Hodge-de Rham numbers for compact almost complex 4-manifolds, generalizing the Hodge numbers of a complex surface. The main properties of these numbers in the case of complex surfaces are extended to this more general setting,
Externí odkaz:
http://arxiv.org/abs/2201.08260
Autor:
Cirici, Joana, Sopena, Anna
Publikováno v:
Proc. Amer. Math. Soc. 150 (2022), 4067-4082
We prove a filtered version of the Homotopy Transfer Theorem which gives an A-infinity algebra structure on any page of the spectral sequence associated to a filtered dg-algebra. We then develop various applications to the study of the geometry and t
Externí odkaz:
http://arxiv.org/abs/2011.03989
A particularly simple description of separability of quantum states arises naturally in the setting of complex algebraic geometry, via the Segre embedding. This is a map describing how to take products of projective Hilbert spaces. In this paper, we
Externí odkaz:
http://arxiv.org/abs/2008.09583
Autor:
Cirici, Joana, Wilson, Scott O.
We study the local commutation relation between the Lefschetz operator and the exterior differential on an almost complex manifold with a compatible metric. The identity that we obtain generalizes the backbone of the local K\"ahler identities to the
Externí odkaz:
http://arxiv.org/abs/2008.04390
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.