Zobrazeno 1 - 10
of 415
pro vyhledávání: '"Circle-valued Morse theory"'
Autor:
G. Yu. Panina, Alena Zhukova
Publikováno v:
Sbornik: Mathematics. 208:1353-1367
Autor:
Ian Rand, Nicholas A. Scoville
Publikováno v:
Involve 13, no. 2 (2020), 219-229
We construct a discrete Morse function which induces both a specified gradient vector field and homological sequence on a given tree. After reviewing the basics of discrete Morse theory, we provide an algorithm to construct a discrete Morse function
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8cc24247dce7db9c108bb532873e5b01
https://projecteuclid.org/euclid.involve/1593072015
https://projecteuclid.org/euclid.involve/1593072015
Autor:
Hisaaki Endo, Andrei Pajitnov
Publikováno v:
The Michigan Mathematical Journal
The Michigan Mathematical Journal, Michigan Mathematical Journal, 2017, 66 (4), pp.813-830. ⟨10.1307/mmj/1508810816⟩
Michigan Math. J. 66, iss. 4 (2017), 813-830
The Michigan Mathematical Journal, Michigan Mathematical Journal, 2017, 66 (4), pp.813-830. ⟨10.1307/mmj/1508810816⟩
Michigan Math. J. 66, iss. 4 (2017), 813-830
Let N be a closed oriented k-dimensional submanifold of the (k+2)-dimensional sphere; denote its complement by C(N). Denote by x the 1-dimensional cohomology class in C(N), dual to N. The Morse-Novikov number of C(N) is by definition the minimal poss
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::827b519738d05697a102ed134fc034b8
https://hal.archives-ouvertes.fr/hal-02383564
https://hal.archives-ouvertes.fr/hal-02383564
Publikováno v:
Journal of Visualization. 19:727-752
Topological methods are important tools for data analysis, and recently receiving more and more attention in vector field visualization. In this paper, we give an introductory description to some important topological methods in vector field visualiz
Publikováno v:
Journal of Functional Analysis. 279:108558
Let $M$ be a complex manifold of dimension $n$ with smooth connected boundary $X$. Assume that $\overline M$ admits a holomorphic $S^1$-action preserving the boundary $X$ and the $S^1$-action is transversal on $X$. We show that the $\overline\partial
Autor:
Kazuto Takao
Publikováno v:
Communications in Analysis and Geometry. 24:645-671
Optimal control in prescribing Webster scalar curvatures on 3-dimensional pseudo Hermitian manifolds
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 127:235-262
In this work, we give new existence and multiplicity results for the solutions of the prescription problem for the Webster scalar curvature on a 3-dimensional Pseudo Hermitian Manifold. The critical points of prescribed functions verify mixed conditi
Autor:
A. Jänig
Publikováno v:
Journal of Differential Equations. 259:1482-1502
A Morse–Smale function on a compact Riemannian manifold can be used to define an associated Morse complex. Its homology is isomorphic to the singular homology of the manifold, which coincides with the singular homology of the Conley index of the ma
Autor:
Bin Yu
Publikováno v:
Discrete and Continuous Dynamical Systems. 36:509-540
In this paper, we first develop the concept of Lyapunov graph to weighted Lyapunov graph (abbreviated as WLG) for nonsingular Morse-Smale flows (abbreviated as NMS flows) on $S^3$. WLG is quite sensitive to NMS flows on $S^3$. For instance, WLG detec
Publikováno v:
Computer Graphics Forum. 34:761-785
Morse theory offers a natural and mathematically-sound tool for shape analysis and understanding. It allows studying the behavior of a scalar function defined on a manifold. Starting from a Morse function, we can decompose the domain of the function