Zobrazeno 1 - 10
of 561
pro vyhledávání: '"Circle-valued Morse theory"'
Autor:
Andrei V. Pajitnov
In the early 1920s M. Morse discovered that the number of critical points of a smooth function on a manifold is closely related to the topology of the manifold. This became a starting point of the Morse theory which is now one of the basic parts of d
Autor:
Endo, Hisaaki, Pajitnov, Andrei
Publikováno v:
Michigan Math. J 66 (2017), 813-830
Let N be a closed oriented k-dimensional submanifold of the (k+2)-dimensional sphere; denote its complement by C(N). Denote by x the 1-dimensional cohomology class in C(N), dual to N. The Morse-Novikov number of C(N) is by definition the minimal poss
Externí odkaz:
http://arxiv.org/abs/1605.04532
Autor:
Kohno, Toshitake, Pajitnov, Andrei
Let A be an essential complex hyperplane arrangement in an n-dimensional complex vector space V. Let H denote the union of the hyperplanes, and M denote the complement to H in V. We develop the real-valued and circle-valued Morse theory for M and pro
Externí odkaz:
http://arxiv.org/abs/1101.0437
Autor:
Ranicki, Andrew
An introduction to circle valued Morse theory and Novikov homology, from an algebraic point of view.
Comment: 26 pages. Notes of lecture given at the Summer School on High-dimensional Manifold Topology, ICTP Trieste, May-June 2001. To appear in
Comment: 26 pages. Notes of lecture given at the Summer School on High-dimensional Manifold Topology, ICTP Trieste, May-June 2001. To appear in
Externí odkaz:
http://arxiv.org/abs/math/0111317
Autor:
Goda, Hiroshi, Pajitnov, Andrei V.
The Morse-Novikov number MN(L) of a smooth link L in the three-dimensional sphere is by definition the minimal possible number of critical points of a regular circle-valued Morse function on the link complement (the term regular means that the Morse
Externí odkaz:
http://arxiv.org/abs/math/0312374
Autor:
Hutchings, Michael, Lee, Yi-Jen
Publikováno v:
Geom. Topol. 3 (1999) 369-396
Let X be a closed manifold with zero Euler characteristic, and let f: X --> S^1 be a circle-valued Morse function. We define an invariant I which counts closed orbits of the gradient of f, together with flow lines between the critical points. We show
Externí odkaz:
http://arxiv.org/abs/dg-ga/9706012
Autor:
Hutchings, Michael, Lee, Yi-Jen
Let X be a compact oriented Riemannian manifold and let $\phi:X\to S^1$ be a circle-valued Morse function. Under some mild assumptions on $\phi$, we prove a formula relating: (a) the number of closed orbits of the gradient flow of $\phi$ of any given
Externí odkaz:
http://arxiv.org/abs/dg-ga/9612004
Autor:
Hisaaki Endo, Andrei Pajitnov
Publikováno v:
The Michigan Mathematical Journal
The Michigan Mathematical Journal, Michigan Mathematical Journal, 2017, 66 (4), pp.813-830. ⟨10.1307/mmj/1508810816⟩
Michigan Math. J. 66, iss. 4 (2017), 813-830
The Michigan Mathematical Journal, Michigan Mathematical Journal, 2017, 66 (4), pp.813-830. ⟨10.1307/mmj/1508810816⟩
Michigan Math. J. 66, iss. 4 (2017), 813-830
Let N be a closed oriented k-dimensional submanifold of the (k+2)-dimensional sphere; denote its complement by C(N). Denote by x the 1-dimensional cohomology class in C(N), dual to N. The Morse-Novikov number of C(N) is by definition the minimal poss
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::827b519738d05697a102ed134fc034b8
https://hal.archives-ouvertes.fr/hal-02383564
https://hal.archives-ouvertes.fr/hal-02383564
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.