Zobrazeno 1 - 10
of 145
pro vyhledávání: '"Cima, Joseph"'
We discuss the Ces`aro operator on the Hardy space in the upper half-plane. We provide a new simple proof of the boundedness of this operator, prove that this operator is equal to the sum of the identity operator and a unitary operator, which implies
Externí odkaz:
http://arxiv.org/abs/2405.19627
A function which is analytic and bounded in the Unit disk is called a generator for the Hardy space or the Bergman space if polynomials in that function are dense in the corresponding space. We characterize generators in terms of sub-spaces which are
Externí odkaz:
http://arxiv.org/abs/2304.04119
Publikováno v:
Ark. Mat. 62 (2024), 331-368
We study Clark measures associated with general two-variable rational inner functions (RIFs) on the bidisk, including those with singularities, and with general $d$-variable rational inner functions with no singularities. We give precise descriptions
Externí odkaz:
http://arxiv.org/abs/2303.11248
Publikováno v:
Michigan Math. J. 73 (2023), 1021-1057
We analyze the fine structure of Clark measures and Clark isometries associated with two-variable rational inner functions on the bidisk. In the degree (n,1) case, we give a complete description of supports and weights for both generic and exceptiona
Externí odkaz:
http://arxiv.org/abs/2101.00508
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Concrete Operators, Vol 9, Iss 1, Pp 151-159 (2022)
In this article we continue our investigation of the Paatero space. We prove that the intersection of every Paatero class V(k) with every Hardy space Hp is closed in that Hp and associate singular continuous measures to elements of V(k). There have b
Externí odkaz:
https://doaj.org/article/38d5811ff08f42e7994e20c57f7f6b59
Autor:
Mortini, Raymond, Cima, Joseph
We continue our study of the set $\mathfrak I_c$ of inner functions $u$ in $H^\infty$ with the property that there is $\eta\in ]0,1[$ such that the level set $\Omega_u(\eta):=\{z\in\mathbb D: |u(z)|<\eta\}$ is connected. These functions are called on
Externí odkaz:
http://arxiv.org/abs/1806.04176
Autor:
Cima, Joseph, Mortini, Raymond
We explicitely unveil several classes of inner functions $u$ in $H^\infty$ with the property that there is $\eta\in ]0,1[$ such that the level set $\Omega_u(\eta):=\{z\in\mathbb D: |u(z)|<\eta\}$ is connected. These so-called one-component inner func
Externí odkaz:
http://arxiv.org/abs/1703.05350