Zobrazeno 1 - 10
of 139
pro vyhledávání: '"Ciftci, Hakan"'
Autor:
Çiftçi, Hakan
Publikováno v:
In Applied Clay Science 15 December 2023 246
Autor:
Ciftci, Hakan, Kisoglu, Hasan Fatih
The energy eigenvalues with any l-states and mass of heavy quark- antiquark system (quarkonium) are obtained by using Asymptotic Iteration Method in the view of non-relativistic quantum chromodynamics, in which the quarks are considered as spinless f
Externí odkaz:
http://arxiv.org/abs/1802.07353
Autor:
Çiftçi, Hakan
Publikováno v:
In Chemical Physics Letters September 2022 802
Autor:
Ciftci, Hakan, Kisoglu, H. Fatih
We have used Asymptotic Iteration Method (AIM) for obtaining the eigenvalues of the Schrodinger's equation for a deformed well problem representing trigonometric functions. By solving the problem, we have found that the Schrodinger's equation for the
Externí odkaz:
http://arxiv.org/abs/1506.06969
Publikováno v:
In Microporous and Mesoporous Materials 15 August 2020 303
Publikováno v:
Cent. Eur. J. Phys. 11, 37 - 48 (2013)
The asymptotic iteration method is used to find exact and approximate solutions of Schroedinger's equation for a number of one-dimensional trigonometric potentials (sine-squared, double-cosine, tangent-squared, and complex cotangent). Analytic and ap
Externí odkaz:
http://arxiv.org/abs/1210.2467
Publikováno v:
Adv. Math. Phys. 2011 (2011) 750168
We study the generalized quantum isotonic oscillator Hamiltonian given by H=-d^2/dr^2+l(l+1)/r^2+w^2r^2+2g(r^2-a^2)/(r^2+a^2)^2, g>0. Two approaches are explored. A method for finding the quasi-polynomial solutions is presented, and explicit expressi
Externí odkaz:
http://arxiv.org/abs/1104.2591
Publikováno v:
J. Phys. A:Math. Theor. 43, 415206 (2010)
Conditions are given for the second-order linear differential equation P3 y" + P2 y'- P1 y = 0 to have polynomial solutions, where Pn is a polynomial of degree n. Several application of these results to Schroedinger's equation are discussed. Conditio
Externí odkaz:
http://arxiv.org/abs/1009.0464
Autor:
Ciftci, Hakan
In this short note, we have defined a new "nested square root" function which generates usual Pi number for $x=2$. We have given some useful identities and asymptotic formulas of the Pi-function.
Externí odkaz:
http://arxiv.org/abs/1004.5188
Publikováno v:
Phys. Rev. A 80, 032507 (2009)
For the family of model soft Coulomb potentials represented by V(r) = -\frac{Z}{(r^q+\beta^q)^{\frac{1}{q}}}, with the parameters Z>0, \beta>0, q \ge 1, it is shown analytically that the potentials and eigenvalues, E_{\nu\ell}, are monotonic in each
Externí odkaz:
http://arxiv.org/abs/0908.2087