Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Cibele Aparecida Ladeia"'
Publikováno v:
Semina: Ciências Exatas e Tecnológicas, Vol 41, Iss 1, Pp 21-30 (2020)
In this work we consider the linear radiative transfer in hollow and solid spheres and the solution in a medium with diffusely reflecting boundaries and energy source as well. The discrete ordinates method with diamond differences scheme is used to c
Externí odkaz:
https://doaj.org/article/5136f4eb7a58461fb79445e71568c17d
Autor:
Cibele Aparecida Ladeia
Publikováno v:
Biblioteca Digital de Teses e Dissertações da UELUniversidade Estadual de LondrinaUEL.
Neste trabalho aplicamos a formulação semi-discreta, caracterizada pela combinação de aproximações distintas para as variáveis temporal e espacial, onde a variável temporal é discretizada utilizando métodos implícitos multi-estágios e a e
Publikováno v:
Journal of Engineering Mathematics. 123:149-163
The radiative–conductive transfer equation in the $$S_N$$ approximation for spherical geometry is solved using a modified decomposition method. The focus of this work is to show how to distribute the source terms in the recursive equation system in
Publikováno v:
Semina: Ciências Exatas e Tecnológicas, Vol 41, Iss 1, Pp 21-30 (2020)
Repositório Institucional da UFRGS
Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
Repositório Institucional da UFRGS
Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
Nesse trabalho consideramos a transferência radiativa linear em esferas ocas e maciças, bem como a solução em um meio com fronteiras refletoras difusas e com fonte de energia. O método de ordenadas discretas com a técnica de diamond difference
Autor:
Jardel Moreira Dylewski, Julio Cesar Lombaldo Fernandes, Cibele Aparecida Ladeia, Marxelo Schramm
Publikováno v:
SSRN Electronic Journal.
Publikováno v:
Journal of Quantitative Spectroscopy and Radiative Transfer. 217:338-352
In this work we present a solution for the radiative conductive transfer equation in cylinder geometry for a solid cylinder. We discuss a semi-analytical approach to the non-linear SN problem, where the solution is constructed by Laplace transform an
Publikováno v:
Integral Methods in Science and Engineering ISBN: 9783030160760
In this work we present a solution for the radiative conductive transfer equation in spherical geometry. We discuss a semi-analytical approach to the non-linear SN problem, where the solution is constructed by Laplace transform and a decomposition me
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f1c45e6951ec52c5b58c80fbe3990cab
https://doi.org/10.1007/978-3-030-16077-7_16
https://doi.org/10.1007/978-3-030-16077-7_16
Publikováno v:
Journal of Computational and Theoretical Transport. 45:386-395
In this work, we present a solution for the radiative–conductive transfer equation in cylinder geometry for a hollow cylinder. We discuss a semi-analytical approach to the non-linear SN problem, where the solution is constructed by Laplace transfor
Publikováno v:
Integral Methods in Science and Engineering, Volume 1 ISBN: 9783319593838
Recently, the radiative conductive transfer equation in cylinder geometry was solved in semi-analytical fashion by the collocation method in both angular variables, using the S N procedure. Upon application of the decomposition method the resulting r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c55837902409fb3083ea934011b7a26b
https://doi.org/10.1007/978-3-319-59384-5_15
https://doi.org/10.1007/978-3-319-59384-5_15
Publikováno v:
Integral Methods in Science and Engineering ISBN: 9783319167268
In this contribution we present a solution for the radiative conductive transfer equation in cylinder geometry. This solution is applied to simulate the radiation and temperature field together with conductive and radiative energy transport originati
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9f6949c9f589582077a5b83a9a0af7f3
https://doi.org/10.1007/978-3-319-16727-5_29
https://doi.org/10.1007/978-3-319-16727-5_29