Zobrazeno 1 - 10
of 3 277
pro vyhledávání: '"Cianchi A."'
This work is concerned with a P\'olya-Szeg\"o type inequality for anisotropic functionals of Sobolev functions. The relevant inequality entails a double-symmetrization involving both trial functions and functionals. A new approach that uncovers geome
Externí odkaz:
http://arxiv.org/abs/2411.01290
Autor:
Verra, L., Galletti, M., Pompili, R., Biagioni, A., Carillo, M., Cianchi, A., Crincoli, L., Curcio, A., Demurtas, F., Di Pirro, G., Lollo, V., Parise, G., Pellegrini, D., Romeo, S., Silvi, G. J., Villa, F., Ferrario, M.
Dielectric capillaries are widely used to generate plasmas for plasma wakefield acceleration. When a relativistic drive bunch travels through a capillary with misaligned trajectory with respect to the capillary axis, it is deflected by the effect of
Externí odkaz:
http://arxiv.org/abs/2410.06684
Existence and global regularity results for boundary-value problems of Robin type for harmonic and polyharmonic functions in $n$-dimensional half-spaces are offered. The Robin condition on the normal derivative on the boundary of the half-space is pr
Externí odkaz:
http://arxiv.org/abs/2406.15257
Autor:
Verra, L., Galletti, M., Pompili, R., Biagioni, A., Carillo, M., Cianchi, A., Crincoli, L., Curcio, A., Demurtas, F., Di Pirro, G., Lollo, V., Parise, G., Pellegrini, D., Romeo, S., Silvi, G. J., Villa, F., Ferrario, M.
The space-charge field of a relativistic charged bunch propagating in plasma is screened due to the presence of mobile charge carriers. We experimentally investigate such screening by measuring the effect of dielectric wakefields driven by the bunch
Externí odkaz:
http://arxiv.org/abs/2406.11314
Necessary and sufficient conditions are offered for Sobolev type spaces built on rearrangement-invariant spaces to be continuously embedded into (generalized) Campanato and Morrey spaces on open subsets of the $n$-dimensional Euclidean space. As a co
Externí odkaz:
http://arxiv.org/abs/2404.09702
Necessary and sufficient conditions are presented for a fractional Orlicz-Sobolev space on $\rn$ to be continuously embedded into a space of uniformly continuous functions. The optimal modulus of continuity is exhibited whenever these conditions are
Externí odkaz:
http://arxiv.org/abs/2401.14667
Autor:
Cianchi, Andrea, Schäffner, Mathias
Local minimizers of integral functionals of the calculus of variations are analyzed under growth conditions dictated by different lower and upper bounds for the integrand. Growths of non-necessarily power type are allowed. The local boundedness of th
Externí odkaz:
http://arxiv.org/abs/2309.16803
Autor:
Simeoni, Daniele, Parise, Gianmarco, Guglietta, Fabio, Rossi, Andrea Renato, Rosenzweig, James, Cianchi, Alessandro, Sbragaglia, Mauro
Publikováno v:
Physics of Plasmas, 31 (2024) 013904
A comprehensive characterization of lattice Boltzmann (LB) schemes to perform warm fluid numerical simulations of particle wakefield acceleration (PWFA) processes is discussed in this paper. The LB schemes we develop hinge on the moment matching proc
Externí odkaz:
http://arxiv.org/abs/2309.04872
We deal with boundary value problems for second-order nonlinear elliptic equations in divergence form, which emerge as Euler-Lagrange equations of integral functionals of the Calculus of Variations built upon possibly anisotropic norms of the gradien
Externí odkaz:
http://arxiv.org/abs/2307.03052
Autor:
R. Pompili, M. P. Anania, A. Biagioni, M. Carillo, E. Chiadroni, A. Cianchi, G. Costa, L. Crincoli, A. Del Dotto, M. Del Giorno, F. Demurtas, M. Ferrario, M. Galletti, A. Giribono, J. K. Jones, V. Lollo, T. Pacey, G. Parise, G. Di Pirro, S. Romeo, G. J. Silvi, V. Shpakov, F. Villa, A. Zigler
Publikováno v:
Communications Physics, Vol 7, Iss 1, Pp 1-8 (2024)
Abstract Plasma wakefield acceleration revolutionized the field of particle accelerators by generating gigavolt-per-centimeter fields. To compete with conventional radio-frequency (RF) accelerators, plasma technology must demonstrate operation at hig
Externí odkaz:
https://doaj.org/article/f3063d8adc304d00b27bd89e53dde0ea