Zobrazeno 1 - 10
of 390
pro vyhledávání: '"Church encoding"'
Autor:
Gianluca Curzi, Luca Roversi
Publikováno v:
Theoretical Computer Science. 837:26-53
We introduce $\mathsf{LEM}$, a type-assignment system for the linear $ \lambda $-calculus that extends second-order $\mathsf{IMLL}_2$, i.e., intuitionistic multiplicative Linear Logic, by means of logical rules that weaken and contract assumptions, b
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kevin H. Xu
Publikováno v:
Theoretical Computer Science. 691:81-106
We develop an approach of partial computations for the lambda calculus. It produces a class of bounded functions (i.e., the co-domains are finite while the domains are possibly infinite), including self-applicable functions. We show that the bounded
Publikováno v:
Theoretical Computer Science. 685:65-82
We develop metatheory of the Lambda calculus in Constructive Type Theory, using a first-order presentation with one sort of names for both free and bound variables and without identifying terms up to α -conversion. Concerning β -reduction, we prove
Autor:
Takuya Kida, Isamu Furuya
Publikováno v:
Algorithms
Volume 12
Issue 8
Algorithms, Vol 12, Iss 8, p 159 (2019)
Volume 12
Issue 8
Algorithms, Vol 12, Iss 8, p 159 (2019)
In this study, we address the problem of compaction of Church numerals. Church numerals are unary representations of natural numbers on the scheme of lambda terms. We propose a novel decomposition scheme from a given natural number into an arithmetic
Autor:
Koji Nakazawa, Ken-etsu Fujita
Publikováno v:
Studia Logica. 104(6):1205-1224
This paper gives new confluence proofs for several lambda calculi with permutation-like reduction, including lambda calculi corresponding to intuitionistic and classical natural deduction with disjunction and permutative conversions, and a lambda cal
Autor:
Hartley Slater
Publikováno v:
Logica Universalis. 10:533-541
In this paper, based on a critical analysis of ideas of Frege, Quine and Prior, we show how Lambda Calculus and Hilbert’s Epsilon Calculus are useful to give us a good understanding of Platonic objects.
Autor:
Richard Statman
Publikováno v:
MFPS
We show that every semigroup with an RE word problem can be pointwise represented in the lambda calculus. In addition, we show that the free monoid generated by an arbitrary RE subset of combinators can be represented as the monoid of all terms which
Publikováno v:
Theoretical Computer Science. 629:51-63
Among the unsolvable terms of the lambda calculus, the mute ones are those having the highest degree of undefinedness. In this paper, we define for each natural number n, an infinite and recursive set M n of mute terms, and show that it is graph-easy