Zobrazeno 1 - 10
of 72
pro vyhledávání: '"Chunaev, Petr"'
Autor:
Stavinova, Elizaveta, Grigorievskiy, Alexander, Volodkevich, Anna, Chunaev, Petr, Bochenina, Klavdiya, Bugaychenko, Dmitry
This survey aims at providing a comprehensive overview of the recent trends in the field of modeling and simulation (M&S) of interactions between users and recommender systems and applications of the M&S to the performance improvement of industrial r
Externí odkaz:
http://arxiv.org/abs/2206.11338
Autor:
Chunaev, Petr
Community detection is a fundamental problem in social network analysis consisting in unsupervised dividing social actors (nodes in a social graph) with certain social connections (edges in a social graph) into densely knitted and highly related grou
Externí odkaz:
http://arxiv.org/abs/1912.09816
Autor:
Chunaev, Petr, Danchenko, Vladimir
The main result of the paper is a lower estimate for the moduli of imaginary parts of the poles of a simple partial fraction (i.e. the logarithmic derivative of an algebraic polynomial) under the condition that the $L^\infty(\mathbb{R})$-norm of the
Externí odkaz:
http://arxiv.org/abs/1907.07437
Autor:
Chunaev, Petr
Here we solve Pad\'e and Prony interpolation problems for the generalized exponential sums with equal weights: $$H_n(z; h)=\frac{\mu}{n}\sum_{k=1}^n h(\lambda_k z),\quad \text{where}\quad \mu,\lambda_k\in \mathbb{C},$$ and $h$ is a fixed analytic fun
Externí odkaz:
http://arxiv.org/abs/1906.01332
We study the behaviour of singular integral operators $T_{k_t}$ of convolution type on $\mathbb{C}$ associated with the parametric kernels $$ k_t(z):=\frac{(\Re z)^{3}}{|z|^{4}}+t\cdot \frac{\Re z}{|z|^{2}}, \quad t\in \mathbb{R},\qquad k_\infty(z):=
Externí odkaz:
http://arxiv.org/abs/1803.02854
Publikováno v:
In Procedia Computer Science 2022 212:181-190
Publikováno v:
In Procedia Computer Science 2022 212:142-151
Publikováno v:
In Procedia Computer Science 2022 212:132-141
Autor:
Chunaev, Petr, Danchenko, Vladimir
Publikováno v:
Journal of Approximation Theory 228 (2018) 1-20
We obtain new parametric quadrature formulas with variable nodes for integrals of complex rational functions over circles, segments of the real axis and the real axis itself. Basing on these formulas we derive $(q,p)$-inequalities of Jackson-Nikolski
Externí odkaz:
http://arxiv.org/abs/1611.03485
The well-known curvature method initiated in works of Melnikov and Verdera is now commonly used to relate the $L^2(\mu)$-boundedness of certain singular integral operators to the geometric properties of the support of measure $\mu$, e.g. rectifiabili
Externí odkaz:
http://arxiv.org/abs/1607.07663