Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Chun-Hsiung Hsia"'
Autor:
Shih-Hsin Chen1 shchen@ncts.tw, Chun-Hsiung Hsia2 willhsia@math.ntu.edu.tw, Ting-Yang Hsiao3 tyhsiao2@illinois.edu
Publikováno v:
SIAM Journal on Applied Dynamical Systems. 2024, Vol. 23 Issue 3, p1720-1765. 46p.
Autor:
Chun-Hsiung Hsia, 夏俊雄
87
Reaction-Diffusion equations describe many models in mathematics,physics,chemistry,biology. For example, see D. J. Murray [7]. One of the most interesting discoveries in studying R-D equations is that traveling wave solutions not only appear
Reaction-Diffusion equations describe many models in mathematics,physics,chemistry,biology. For example, see D. J. Murray [7]. One of the most interesting discoveries in studying R-D equations is that traveling wave solutions not only appear
Externí odkaz:
http://ndltd.ncl.edu.tw/handle/33982583194209825229
Publikováno v:
Applicable Analysis. :1-20
Publikováno v:
IEEE Transactions on Circuits and Systems I: Regular Papers. 69:757-770
Publikováno v:
IEEE Transactions on Control of Network Systems. :1-12
Publikováno v:
Journal of Statistical Physics. 189
In the present work, we adopt the idea of velocity averaging lemma to establish regularity for stationary linearized Boltzmann equations in a bounded convex domain. Considering the incoming data, with three iterations, we establish regularity in frac
Autor:
Chun-Hsiung Hsia, Takaaki Nishida
Publikováno v:
Journal of Mathematical Fluid Mechanics. 24
Publikováno v:
Journal of Differential Equations. 268:7897-7939
We investigate the synchronized collective behavior of the Kuramoto oscillators with time-delayed interactions and phase lag effect. Both the phase and frequency synchronization are in view. We first prove the frequency synchronization for both semi-
Publikováno v:
Discrete & Continuous Dynamical Systems - B. 24:3319-3334
We investigate the collective behavior of synchrony for the Kuramoto and Winfree models. We first prove the global convergence of frequency synchronization for the non-identical Kuramoto system of three oscillators. It is shown that the uniform bound
Publikováno v:
Communications on Pure & Applied Analysis. 18:301-322
Let \begin{document}$N ≥ 3$\end{document} and \begin{document}$Ω \subset \mathbb{R}^N$\end{document} be a \begin{document}$C^2$\end{document} bounded domain. We study the existence of positive solution \begin{document}$u ∈ H^1(Ω)$\end{document}