Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Chun, Sungbong"'
Autor:
Cheng, Miranda C. N., Chun, Sungbong, Feigin, Boris, Ferrari, Francesca, Gukov, Sergei, Harrison, Sarah M., Passaro, Davide
By studying the properties of $q$-series $\widehat Z$-invariants, we develop a dictionary between 3-manifolds and vertex algebras. In particular, we generalize previously known entries in this dictionary to Lie groups of higher rank, to 3-manifolds w
Externí odkaz:
http://arxiv.org/abs/2201.04640
Autor:
Chun, Sungbong
In this dissertation, we investigate integralities in Chern-Simons theory. The integralities of interest arise from non-local observables (Wilson lines) in Chern-Simons theory and the partition function itself. In the associated supersymmetric gauge
Publikováno v:
J. High Energ. Phys. 2020, 152 (2020)
One of the main challenges in 3d-3d correspondence is that no existent approach offers a complete description of 3d $N=2$ SCFT $T[M_3]$ --- or, rather, a "collection of SCFTs" as we refer to it in the paper --- for all types of 3-manifolds that inclu
Externí odkaz:
http://arxiv.org/abs/1911.08456
We find and propose an explanation for a large variety of modularity-related symmetries in problems of 3-manifold topology and physics of 3d $\mathcal{N}=2$ theories where such structures a priori are not manifest. These modular structures include: m
Externí odkaz:
http://arxiv.org/abs/1809.10148
Autor:
Chun, Sungbong, Bao, Ning
A path integral on a link complement of a three-sphere fixes a vector (the "link state") in Chern-Simons theory. The link state can be written in a certain basis with the colored link invariants as its coefficients. We use symmetric webs to systemati
Externí odkaz:
http://arxiv.org/abs/1707.03525
Autor:
Chun, Sungbong
We study junctions of Wilson lines in refined SU(N) Chern-Simons theory and their local relations. We focus on junctions of Wilson lines in antisymmetric and symmetric powers of the fundamental representation and propose a set of local relations whic
Externí odkaz:
http://arxiv.org/abs/1701.03518
Autor:
Chun, Sungbong
We perform a resurgence analysis of the $SU(2)$ Chern-Simons partition function on a Brieksorn homology sphere $\Sigma(2,5,7)$. Starting from an exact Chern-Simons partition function, we study the Borel resummation of its perturbative expansion.
Externí odkaz:
http://arxiv.org/abs/1701.03528
We show how networks of Wilson lines realize quantum groups U_q(sl(m)), for arbitrary m, in 3d SU(N) Chern-Simons theory. Lifting this construction to foams of surface operators in 4d theory we find that rich structure of junctions is encoded in comb
Externí odkaz:
http://arxiv.org/abs/1507.06318
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.