Zobrazeno 1 - 10
of 101
pro vyhledávání: '"Chu, Hùng Việt"'
Autor:
Chen, Xuyuan, Chu, Hung Viet, Kesumajana, Fadhlannafis K., Kim, Dongho, Li, Liran, Miller, Steven J., Yang, Junchi, Yao, Chris
Let $a, b\in \mathbb{N}$ be relatively prime. Previous work showed that exactly one of the two equations $ax + by = (a-1)(b-1)/2$ and $ax + by + 1 = (a-1)(b-1)/2$ has a nonnegative, integral solution; furthermore, the solution is unique. Let $F_n$ be
Externí odkaz:
http://arxiv.org/abs/2409.02933
Autor:
Chu, Hung Viet, Vasseur, Zachary Louis
For a finite set $A\subset\mathbb{N}$ and $k\in \mathbb{N}$, let $\omega_k(A) = \sum_{i\in A, i\neq k}1$. For each $n\in \mathbb{N}$, define $$a_{k, n}\ =\ |\{E\subset \mathbb{N}\,:\, E = \emptyset\mbox{ or } \omega_k(E) < \min E\leqslant \max E\leqs
Externí odkaz:
http://arxiv.org/abs/2405.19352
Autor:
Chu, Hung Viet, Schlumprecht, Thomas
We prove that for every countable ordinal $\xi$, the Tsirelson's space $T_\xi$ of order $\xi$, is naturally, i.e., via the identity, $3$-isomorphc to its modified version. For the first step, we prove that the Schreier family $\mathcal{S}_\xi$ is the
Externí odkaz:
http://arxiv.org/abs/2401.16491
Autor:
Beanland, Kevin, Chu, Hung Viet
A nonempty set $A\subset\mathbb{N}$ is $\ell$-strong Schreier if $\min A\geqslant \ell|A|-\ell+1$. We define a set of positive integers to be sparse if either the set has at most two numbers or the differences between consecutive numbers in increasin
Externí odkaz:
http://arxiv.org/abs/2311.01926
Autor:
Arachchi, Sujith Uthsara Kalansuriya, Chu, Hung Viet, Liu, Jiasen, Luan, Qitong, Marasinghe, Rukshan, Miller, Steven J.
For relatively prime natural numbers $a$ and $b$, we study the two equations $ax+by = (a-1)(b-1)/2$ and $ax+by+1= (a-1)(b-1)/2$, which arise from the study of cyclotomic polynomials. Previous work showed that exactly one equation has a nonnegative so
Externí odkaz:
http://arxiv.org/abs/2309.04488
Autor:
Chu, Hung Viet
Let $\mathcal{G}$ be the greedy algorithm that, for each $\theta\in (0,1]$, produces an infinite sequence of positive integers $(a_n)_{n=1}^\infty$ satisfying $\sum_{n=1}^\infty 1/a_n = \theta$. For natural numbers $p < q$, let $\Upsilon(p,q)$ denote
Externí odkaz:
http://arxiv.org/abs/2306.12564
We continue the study initiated in [F. Albiac and P. Wojtaszczyk, Characterization of $1$-greedy bases, J. Approx. Theory 138 (2006), no. 1, 65-86] of properties related to greedy bases in the case when the constants involved are sharp, i.e., in the
Externí odkaz:
http://arxiv.org/abs/2304.05888
Inspired by the surprising relationship (due to A. Bird) between Schreier sets and the Fibonacci sequence, we introduce Schreier multisets and connect these multisets with the $s$-step Fibonacci sequences, defined, for each $s\geqslant 2$, as: $F^{(s
Externí odkaz:
http://arxiv.org/abs/2304.05409
We continue our study of the Thresholding Greedy Algorithm when we restrict the vectors involved in our approximations so that they either are supported on intervals of $\mathbb N$ or have constant coefficients. We introduce and characterize what we
Externí odkaz:
http://arxiv.org/abs/2302.05758
Autor:
Chu, Hung Viet
Let $0 < \theta \leqslant 1$. A sequence of positive integers $(b_n)_{n=1}^\infty$ is called a weak greedy approximation of $\theta$ if $\sum_{n=1}^{\infty}1/b_n = \theta$. We introduce the weak greedy approximation algorithm (WGAA), which, for each
Externí odkaz:
http://arxiv.org/abs/2302.01747