Zobrazeno 1 - 10
of 57
pro vyhledávání: '"Christopher Voll"'
In this book, three authors introduce readers to strong approximation methods, analytic pro-p groups and zeta functions of groups. Each chapter illustrates connections between infinite group theory, number theory and Lie theory. The first introduces
Autor:
Alison D. Tang, Colette Felton, Eva Hrabeta-Robinson, Roger Volden, Christopher Vollmers, Angela N. Brooks
Publikováno v:
Genome Biology, Vol 25, Iss 1, Pp 1-21 (2024)
Abstract Background RNA-seq has brought forth significant discoveries regarding aberrations in RNA processing, implicating these RNA variants in a variety of diseases. Aberrant splicing and single nucleotide variants (SNVs) in RNA have been demonstra
Externí odkaz:
https://doaj.org/article/e84f9fb100e24b9fa9603bd9e3275e12
Autor:
Mima Stanojkovski, Christopher Voll
We describe the automorphism groups of finite $p$-groups arising naturally via Hessian determinantal representations of elliptic curves defined over number fields. Moreover, we derive explicit formulas for the orders of these automorphism groups for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::05c2de1bf4fdef66b8694ab44613bd2e
https://doi.org/10.1007/s00208-021-02193-8
https://doi.org/10.1007/s00208-021-02193-8
Autor:
Angela Carnevale, Christopher Voll
Publikováno v:
Monatshefte für Mathematik. 186:215-233
We study Dirichlet series enumerating orbits of Cartesian products of maps whose orbit distributions are modelled on the distributions of finite index subgroups of free abelian groups of finite rank. We interpret Euler factors of such orbit Dirichlet
Autor:
Christopher Voll, Duong Hoang Dung
Publikováno v:
Transactions of the American Mathematical Society. 369:6327-6349
Let $G$ be a finitely generated torsion-free nilpotent group. The representation zeta function $\zeta_G(s)$ of $G$ enumerates twist isoclasses of finite-dimensional irreducible complex representations of $G$. We prove that $\zeta_G(s)$ has rational a
Autor:
Christopher Voll
Publikováno v:
Spectral Structures and Topological Methods in Mathematics ISBN: 9783037191972
Spectral Structures and Topological Methods in Mathematics
Spectral Structures and Topological Methods in Mathematics
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2135935cef4fa62d2d50e1a1c47ca353
https://doi.org/10.4171/197-1/15
https://doi.org/10.4171/197-1/15
Autor:
Roger Volden, Kayla D. Schimke, Ashley Byrne, Danilo Dubocanin, Matthew Adams, Christopher Vollmers
Publikováno v:
Genome Biology, Vol 24, Iss 1, Pp 1-15 (2023)
Abstract In this manuscript, we introduce and benchmark Mandalorion v4.1 for the identification and quantification of full-length transcriptome sequencing reads. It further improves upon the already strong performance of Mandalorion v3.6 used in the
Externí odkaz:
https://doaj.org/article/af5a747bd7ab42a6b5053d0450a7c2ff
Autor:
Michael M. Schein, Christopher Voll
Publikováno v:
Israel Journal of Mathematics. 211:171-195
We compute explicitly the normal zeta functions of the Heisenberg groups $H(R)$, where $R$ is a compact discrete valuation ring of characteristic zero. These zeta functions occur as Euler factors of normal zeta functions of Heisenberg groups of the f
We enumerate traceless square matrices over finite quotients of compact discrete valuation rings by their image sizes. We express the associated rational generating functions in terms of statistics on symmetric and hyperoctahedral groups, viz. Coxete
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5cdc3def62fd4a693ad12799a5a85376
https://doi.org/10.1007/s11856-018-1755-4
https://doi.org/10.1007/s11856-018-1755-4