Zobrazeno 1 - 10
of 102
pro vyhledávání: '"Christophe Vignat"'
Autor:
Karl Dilcher, Christophe Vignat
Publikováno v:
International Journal of Number Theory. 19:709-731
Koecher in 1980 derived a method for obtaining identities for the Riemann zeta function at odd positive integers, including a classical result for [Formula: see text] due to Markov and rediscovered by Apéry. In this paper, we extend Koecher’s meth
Dirichlet series under standard convolutions: variations on Ramanujan’s identity for odd zeta values
Publikováno v:
The Ramanujan Journal. 59:1245-1285
Publikováno v:
Open Mathematics. 21
The method of brackets is a symbolic approach to the computation of integrals over R n {{\mathbb{R}}}^{n} based on a deep result by Ramanujan. Its usefulness to obtain new and difficult integrals has been demonstrated many times in the last few years
Autor:
Tanay Wakhare, Christophe Vignat
Publikováno v:
International Journal of Number Theory
International Journal of Number Theory, World Scientific Publishing, 2021, 17 (08), pp.1873-1897. ⟨10.1142/S1793042121500676⟩
International Journal of Number Theory, World Scientific Publishing, 2021, 17 (08), pp.1873-1897. ⟨10.1142/S1793042121500676⟩
We study some classical identities for multiple zeta values and show that they still hold for zeta functions built on the zeros of an arbitrary function. We introduce the complementary zeta function of a system, which naturally occurs when lifting id
Autor:
Christophe Vignat, Tanay Wakhare
Publikováno v:
Journal of Number Theory
Journal of Number Theory, Elsevier, 2020, 216, pp.280-306. ⟨10.1016/j.jnt.2020.03.002⟩
Journal of Number Theory, Elsevier, 2020, 216, pp.280-306. ⟨10.1016/j.jnt.2020.03.002⟩
We extend some results recently obtained by Dan Romik [14] about the Taylor coefficients of the theta function θ 3 ( e − π ) to the case θ 3 ( q ) of a real valued variable 0 q 1 . These results are obtained by carefully studying the properties
Autor:
Zachary P. Bradshaw, Christophe Vignat
We give a formal extension of Ramanujan's master theorem using operational methods. The resulting identity transforms the computation of a product of integrals on the half-line to the computation of a Laplace transform. Since the identity is purely f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::94e226572b78999cfbab8898c78af296
Publikováno v:
Journal of Mathematical Analysis and Applications
Journal of Mathematical Analysis and Applications, Elsevier, 2019, 476 (2), pp.569-584. ⟨10.1016/j.jmaa.2019.03.071⟩
Journal of Mathematical Analysis and Applications, Elsevier, 2019, 476 (2), pp.569-584. ⟨10.1016/j.jmaa.2019.03.071⟩
We show that each member of a doubly infinite sequence of highly nonlinear expressions of Bernoulli polynomials, which can be seen as linear combinations of certain higher-order convolutions, is a multiple of a specific product of linear factors. The
Publikováno v:
International Journal of Number Theory
International Journal of Number Theory, World Scientific Publishing, 2021, 17 (02), pp.223-237. ⟨10.1142/S1793042120400102⟩
International Journal of Number Theory, World Scientific Publishing, 2021, 17 (02), pp.223-237. ⟨10.1142/S1793042120400102⟩
We establish the triple integral evaluation \[ \int_{1}^{\infty} \int_{0}^{1} \int_{0}^{1} \frac{dz \, dy \, dx}{x(x+y)(x+y+z)} = \frac{5}{24} \zeta(3), \] as well as the equivalent polylogarithmic double sum \[ \sum_{k=1}^{\infty} \sum_{j=k}^{\infty
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6bd7975f226d82720e40dbc26f94dbb2
http://arxiv.org/abs/2004.06232
http://arxiv.org/abs/2004.06232
Publikováno v:
International Journal of Number Theory
International Journal of Number Theory, World Scientific Publishing, 2020, 16 (03), pp.579-602. ⟨10.1142/S1793042120500293⟩
International Journal of Number Theory, World Scientific Publishing, 2020, 16 (03), pp.579-602. ⟨10.1142/S1793042120500293⟩
We introduce a symbolic representation of $r$-fold harmonic sums at negative indices. This representation allows us to recover and extend some recent results by Duchamp et al., such as recurrence relations and generating functions for these sums. Thi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::470e32b81f085c07011324eae657c30e
https://hal.archives-ouvertes.fr/hal-02518758
https://hal.archives-ouvertes.fr/hal-02518758
Autor:
Christophe Vignat, Jordan Stoyanov
Publikováno v:
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society, American Mathematical Society, 2020, 148 (4), pp.1791-1804. ⟨10.1090/proc/14638⟩
Proceedings of the American Mathematical Society, American Mathematical Society, 2020, 148 (4), pp.1791-1804. ⟨10.1090/proc/14638⟩
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::58b81ca2c8f01b29ea897fadde1be88c
https://hal.archives-ouvertes.fr/hal-02500435
https://hal.archives-ouvertes.fr/hal-02500435