Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Christophe Dobrovolny"'
Autor:
Christophe Dobrovolny
Publikováno v:
Journal of Physics A: Mathematical and General. 39:9387-9398
We investigate the statistical mechanics of binary mixtures within the framework of a two-component SOS-model, where we obtain an exact formula for the free energy. This allows for an explicit expression linking the surface tension of a binary mixtur
Publikováno v:
Journal of Statistical Physics
Journal of Statistical Physics, 2004, 114, pp.574-604
Journal of Statistical Physics, Springer Verlag, 2004, 114, pp.574-604
Journal of Statistical Physics, 2004, 114, pp.574-604
Journal of Statistical Physics, Springer Verlag, 2004, 114, pp.574-604
International audience; We consider the problem of wetting on a heterogeneous wall with mesoscopic defects: i.e.\ defects of order $L^{\varepsilon}$, $0
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6598e52a251389db962388ab9b021490
https://hal.science/hal-00138010
https://hal.science/hal-00138010
Publikováno v:
Journal of Statistical Physics
Journal of Statistical Physics, Springer Verlag, 2004, 114, pp.1269-1302
Journal of Statistical Physics, 2004, 114, pp.1269-1302
Journal of Statistical Physics, Springer Verlag, 2004, 114, pp.1269-1302
Journal of Statistical Physics, 2004, 114, pp.1269-1302
We propose a rigorous approach of Semi-Infinite lattice systems illustrated with the study of surface transitions of the semi-infinite Potts model.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::06d49389aa32914ef28ebd82b1792464
https://hal.archives-ouvertes.fr/hal-00003172/file/JSP-103-7-DLR-revised-last.pdf
https://hal.archives-ouvertes.fr/hal-00003172/file/JSP-103-7-DLR-revised-last.pdf
Publikováno v:
Journal of Statistical Mechanics: Theory and Experiment
Journal of Statistical Mechanics: Theory and Experiment, IOP Publishing, 2006
Journal of Statistical Mechanics: Theory and Experiment, 2006
Journal of Statistical Mechanics: Theory and Experiment, IOP Publishing, 2006
Journal of Statistical Mechanics: Theory and Experiment, 2006
The behaviour of the mean Euler-Poincar\'{e} characteristic and mean Betti's numbers in the Ising model with arbitrary spin on $\mathbbm{Z}^2$ as functions of the temperature is investigated through intensive Monte Carlo simulations. We also consider