Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Christoph Mudersbach"'
Publikováno v:
Hydrology, Vol 10, Iss 12, p 233 (2023)
The design of a river-basin-specific flood hydrograph generator based on gauge records enables the generation of synthetic flood hydrographs for the dimensioning of hydraulic structures. Based on selected flow time series, flood waves can be describe
Externí odkaz:
https://doaj.org/article/b97775a836584a44a2cff141bdd3e0c0
Autor:
Jürgen Jensen, Thomas Wahl, Christoph Mudersbach, Stephan Mai, Hartmut Hein, Sönke Dangendorf
Publikováno v:
Water, Vol 4, Iss 1, Pp 170-195 (2012)
Changes in the seasonal cycle of mean sea level (MSL) may affect the heights of storm surges and thereby flood risk in coastal areas. This study investigates the intra- and inter-annual variability of monthly MSL and its link to the North Atlantic Os
Externí odkaz:
https://doaj.org/article/e073a29886194ffdbe23a58f9da3539b
Autor:
Christoph Mudersbach
Publikováno v:
WASSERWIRTSCHAFT. 112:34-41
Autor:
Anika Hotzel, Christoph Mudersbach
The prediction, warning, and impact of heavy precipitation events are highly dependent on the available data basis and regional factors. Especially in small catchments, explicit warning is often hampered by the lack of runoff data. The effects of urb
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8ff6f8511eea3210514a459e0888c7de
https://doi.org/10.5194/egusphere-egu23-1231
https://doi.org/10.5194/egusphere-egu23-1231
Autor:
Felix Simon, Christoph Mudersbach
Heavy rainfall events and urban flash floods pose a high risk potential for humans and the environment, as a concrete prediction of the regional impacts is difficult. The effects of heavy rainfall events and urban flash floods depend, among other thi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::31decc9a0dc4eb3fca38473e3fcd1e64
https://doi.org/10.5194/egusphere-egu23-11000
https://doi.org/10.5194/egusphere-egu23-11000
Publikováno v:
WASSERWIRTSCHAFT. 111:30-33
Publikováno v:
WASSERWIRTSCHAFT. 110:12-19
Autor:
Christoph Mudersbach
Publikováno v:
WASSERWIRTSCHAFT. 110:32-39
Publikováno v:
WASSERWIRTSCHAFT. 109:80-83
The application of Deep Learning methods for modelling rainfall-runoff have reached great advances in the last years. Especially, long short-term memory (LSTM) networks have gained enhanced attention for time-series prediction. The architecture of th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5a7031d6a98da78007bef5007fc399fb
https://doi.org/10.5194/egusphere-egu21-1136
https://doi.org/10.5194/egusphere-egu21-1136